

CLINICAL EFFECTIVENESS OF DIURETICS FOLLOWING CONTINUOUS RENAL REPLACEMENT THERAPY

Do Hee Kim¹, Jin Hae Kim¹, Ji Hyeon Park¹, Chi Ryang Chung², Kyeongman Jeon², Jung Eun Lee¹, Wooseong Huh¹, Gee Young Suh², Yoon-Goo Kim¹, Dae Joong Kim¹, Ha Young Oh¹ and Hye Ryoun Jang¹ ¹Division of Nephrology, Department of Medicine; ²Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

BACKGROUND & AIMS		METHODS		
B	ackground	<u>Study design</u>		
•	Acute kidney injury (AKI)	 Retrospective observational study at Samsung Medical Center, Sungkyunkwan University Duration : September 2009 – December 2014 		
	: Major problem in intensive care unit, associated with high mortality			
•	Continuous renal replacement therapy (CRRT)	Patients selection	Data collection and follow-up	
	: Preferred treatment option for severe AKI requiring RRT (renal replacement	1176 adult AKI patients receiving CRRT in	Baseline characteristics	
	therapy) in critically ill patients, due to <u>better hemodynamic tolerance</u> and <u>more</u>	whom the discontinuation of CRRT was tried	: age, sex, underlying disease,	
	<u>steady solute control</u> than other modality	Exclusion criteria	duration of CRRT, renal function	
•	Indicators of renal recovery after AKI in previous reports	- Expired within 3 days after CRRT cessation	Follow-up of urine output (UO, mL/day)	
		- Patients with insufficient data	and renal function (serum creatin	

- : <u>non-oliguric state</u>, shorter renal replacement therapy (RRT) period, younger age → clinically manageable with adequate administration of diuretics
- No consensus regarding diuretic therapy in AKI patients at the time of discontinuing CRRT

Aims of this study

- To investigate the effect of diuretics on the clinical course of critically ill patients with AKI focusing on urine output and renal function recovery following CRRT
 To find the proper administration method of diuretics
- Patients with insufficient data
- Preexisting end-stage renal disease
- Categorization depending on the restarting RRT within 3days and the prescription of diuretics following CRRT cessation
 - CRRT cessation group
 Hemodialysis (HD) start group
 CRRT resume group
 - ✓ Control (no diuretics) group
 Diuretics group
- and renal function (serum creatinine) : baseline (1day before starting CRRT) D-1 (1day before CRRT cessation) D0 (CRRT cessation) D1 \rightarrow D2 \rightarrow D3 (after CRRT cessation)
- Prescription of furosemide : Continuous intravenous infusion (Civ) Intermittent intravenous administration (Int.) Per oral administration (PO) Combination with other diuretics (Comb.)

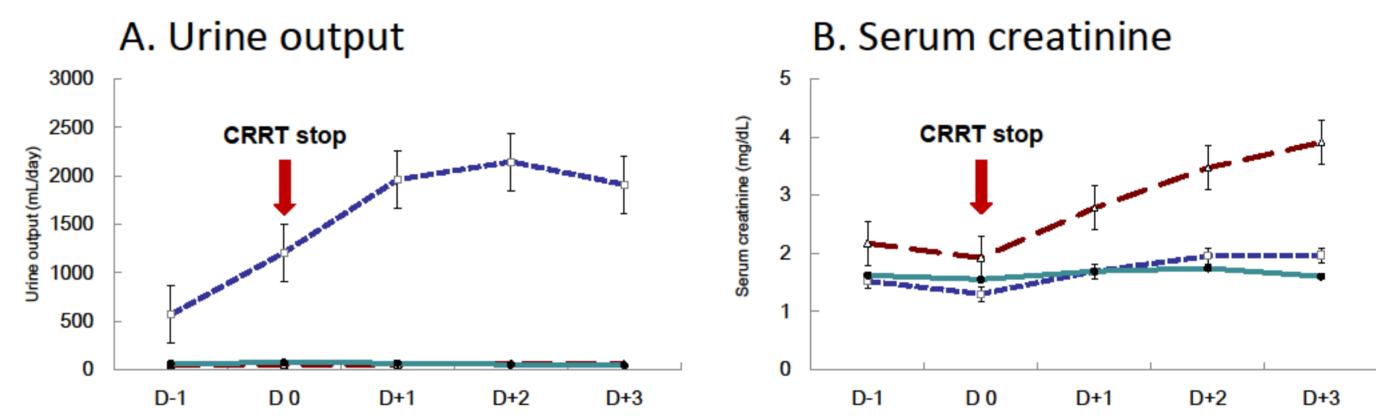
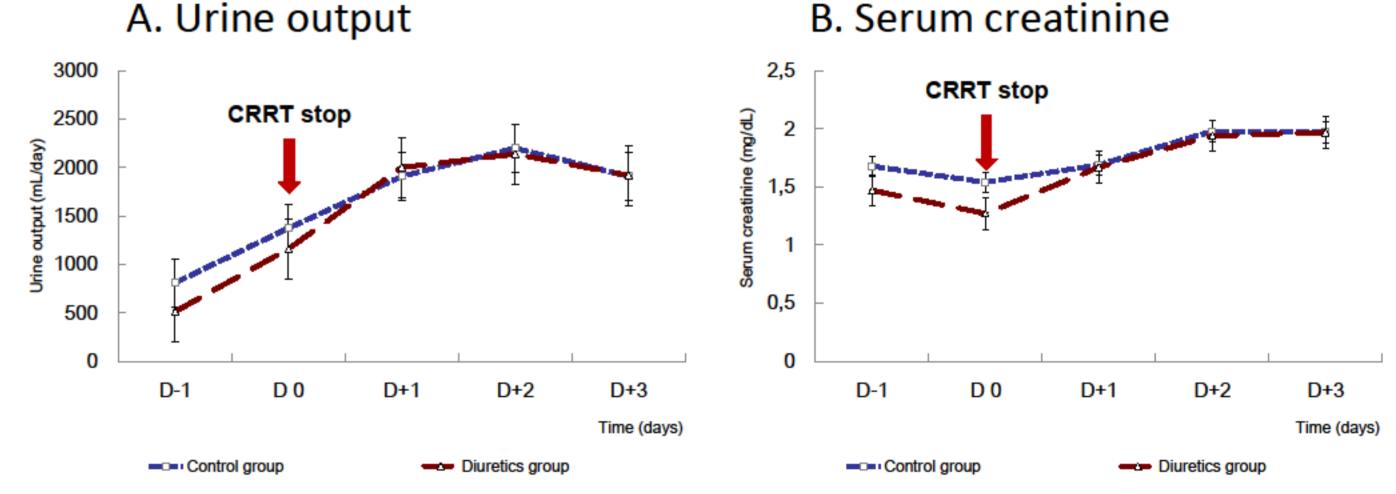

RESULTS

Table1. Baseline characteristics depending on restarting RRT in 3days

Variables	CRRT cessation group (n=517)	HD start group (n=310)	CRRT resume group (n=349)	P value
Age (years)	62.1 ± 15.2	61.0 ± 14.9	61.9 ± 14.8	P = 0.613
Male, n (%)	330 (63.8 %)	197 (63.5 %)	222 (63.6 %)	P = 0.996
Hypertension, n (%)	185 (35.8 %)	142 (45.8 %)	95 (27.2 %)	P < 0.001
Diabetes mellitus, n (%)	136 (26.3 %)	94 (30.3 %)	81 (23.2 %)	P = 0.118
Ischemic heart disease, n (%)	36 (7.0 %)	17 (5.5 %)	17 (4.9 %)	P = 0.408
Liver cirrhosis, n (%)	31 (6.0 %)	24 (7.7 %)	34 (9.7 %)	P = 0.123
Heart failure, n (%)	22 (4.3 %)	19 (6.1 %)	15 (4.3 %)	P = 0.420
Baseline BUN (mg/dL)	58.8 ± 34.0	61.1 ± 30.2	55.8 ± 30.3	P = 0.106
Baseline serum creatinine (mg/dL)	2.58 (1.64-3.98)	4.00 (2.53-6.20)	2.55 (1.67-3.82)	P < 0.001
Baseline eGFR (mL/min/1.73m ²)	22.8 (14.3-37.5)	13.3 (8.3-24.1)	23.7 (14.1-36.8)	P < 0.001
Baseline urine output (mL/day)	570 (180-1308)	116 (0-361)	244 (32-835)	P < 0.001
D-1 BUN (mg/dL)	37.4 ± 25.5	38.1 ± 22.2	37.6 ± 21.7	P = 0.924
D-1 serum creatinine (mg/dL)	1.52 (1.04-2.37)	2.17 (1.39-3.42)	1.62 (1.12-2.54)	P < 0.001
D-1 eGFR (mL/min/1.73m ²)	42.5 (26.4-65.9)	28.7 (15.7-44.9)	39.1 (24.5-56.1)	P < 0.001
D-1 urine output (mL/day)	565 (252-1250)	45 (5-190)	60 (10-289)	P < 0.001
D-1 mean blood pressure (mmHg)	79.4 ± 15.1	78.5 ± 15.4	79.6 ± 15.0	P = 0.631
D-1 vasopressor use, n (%)	342 (66.2%)	202 (65.2 %)	241 (69.1 %)	P = 0.530
Duration of CRRT (days)	3.4 ± 2.6	4.8 ± 5.1	4.8 ± 5.0	P < 0.001
Post CRRT diuretics use, n (%)	388 (75.0 %)	129 (41.6 %)	102 (29.2 %)	P < 0.001

Figure 1. Overall changes in urine output and renal function after

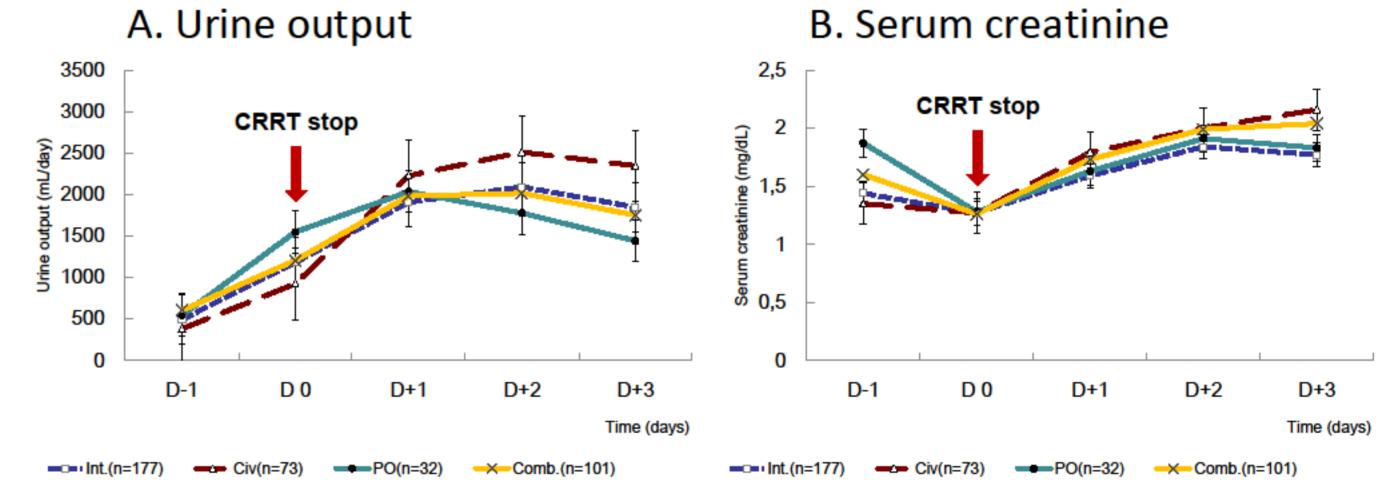
discontinuation of CRRT



Age, duration of CRRT, BUN and mean blood pressure: presented as means ± standard deviation Serum creatinine, eGFR and urine output: presented as median (interquartile range) BUN, blood urea nitrogen; D-1, 1 day before stopping CRRT; eGFR, estimated glomerular filtration rate.

- CRRT cessation group had shorter duration of CRRT, showed greater urine output compared with other groups 1 day prior to starting CRRT and 1 day prior to stopping CRRT.
- In the CRRT cessation group, the proportion of patients receiving diuretics after discontinuation of CRRT was higher compared with other groups.

Urine output was significantly higher in the CRRT cessation group after discontinuation of CRRT compared with other groups.


Figure 2. Effectiveness of diuretics in the CRRT cessation group

In the CRRT cessation group, patients treated with diuretics showed greater increase in urine output and mild elevation of serum creatinine after stopping CRRT compared to non-diuretic subgroup.

Figure 3. Comparison of furosemide prescription methods in the

CRRT cessation group

- ✓ Overall, high D-1 urine output (p<0.001), prescription of diuretics (p<0.001) and duration of CRRT(p=0.0002) were predictive factors for successful cessation of CRRT.</p>
- ✓ In patients who were treated with diuretics, high D-1 urine output (p<0.001) and duration of CRRT (p=0.03) were predictive factors for effectiveness of diuretics which was defined as successful cessation of CRRT and UO > 400 mL/day following CRRT.
- ✓ Cut off value of D-1 urine output for prediction of successful cessation of CRRT in oliguric (urine output ≤ 400 mL/day) patients of diuretics group : 125 mL/day

CONCLUSION

> Diuretic therapy following CRRT significantly increased urine output although it caused mild elevation of serum creatinine.

> Continuous infusion of furosemide showed a tendency to increase urine output more effectively, but also further increased

> D-1 urine output, administration of diuretics, and duration of CRRT were significantly related with successful CRRT cessation.

> Our study suggests that the clinical effectiveness of diuretic therapy in critically ill patients with AKI, especially who need

Furosemide Civ group showed a tendency towards greater urine output and higher serum creatinine compared to other methods.

REFERENCES

 Uchino S, Bellomo R, Morimatsu H, et al. Discontinuation of continuous renal replacement therapy: a post hoc analysis of a prospective multicenter observational study. *Critical care medicine*. Sep 2009;37(9):2576-2582.
 Heise D, Gries D, Moerer O, Bleckmann A, Quintel M. Predicting restoration of kidney function during CRRT-free intervals. *Journal of cardiothoracic surgery*. 2012;7:6.
 Wu VC, Ko WJ, Chang HW, et al. Risk factors of early redialysis after weaning from postoperative acute renal replacement therapy. *Intensive care medicine*. Jan 2008;34(1):101-108.

njury. Chinical.

serum creatinine when continued for more than 1 day.

aggressive volume control after cessation of CRRT.

DOI: 10.3252/pso.eu.53era.2016

