CIRCULATING ACE AND ACE2 IN PATIENTS WITH CHRONIC KIDNEY DISEASE WITHOUT HISTORY OF CARDIOVASCULAR DISEASE

Lidia Anguiano, Marta Riera, Julio Pascual, Clara Barrios, Angels Betriu*, José M Valdivielso*, Elvira Fernández*, María José Soler

Parc de Salut

Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain;* Department of Nephrology, Hospital Arnau de Vilanova, Lleida.

INTRODUCTION & AIM

- Circulating angiotensin converting enzyme (ACE)2 activity is increased in patients with cardiovascular (CV) disease(1,2,3) and in experimental models of diabetes⁽⁴⁾.
- Our aim is to study the circulating ACE2 and ACE activity in patients with Chronic Kidney Disease (CKD) without history of CV disease.

PATIENTS & METHODS

- Patients from NEFRONA study without history of CV disease. Groups analyzed:
 - CKD 3-5 stages without dialysis (CKD3-5, n=1458)
 - o Patients undergoing dialysis (CKD5D, n=546)
 - o Patients without CKD (CONT, n=568)
- Circulating ACE2 and ACE activity were measured using two modified fluorimetric assays for plasma samples⁽⁵⁾.
- Statistics: paired case-control studies, bivariate analysis and multiple regression analysis.

RESULTS

Figure 1-Paired case-control study for circulating ACE2 activity. Three paired case-control studies were performed (CONT vs CKD3-5; CONT vs CKD5D; and CKD3-5 vs CKD5D). Samples were matched by gender, diabetes, hypertension, dyslipidemia, smoking habits, weight and age. No differences were found between CKD3-5 and CKD5D (p=0.27). Circulating ACE2 activity was significantly decreased in CKD 3-5 (p<0.01) and CKD5D (p<0.001) as compared to CONT group.

Figure 2-Paired case-control study for circulating ACE activity. Three paired case-control studies were performed (CONT vs CKD3-5; CONT vs CKD5D; and CKD3-5 vs CKD5D). Samples were matched by gender, diabetes, hypertension, dyslipidemia, smoking habits, weight and age. Circulating ACE activity was significantly increased in CKD3-5 (p=0.047) and CKD5D (p=0.005) as compared to CONT group. Significant differences were found between CKD3-5 and CKD5D (p=0.004).

	Standardized coefficient (β)	p-value
CONT		
Male gender	0.243	< 0.001
Age	0.148	< 0.001
MRC3-5		
Male gender	0.224	< 0.001
Age	0.060	0.020
Diabetes	0.074	0.004
MRC5D		
Male gender	0.318	< 0.001
Age	0.119	0.003
ARB treatment	0.095	0.020
Colecalciferol treatment	-0.095	0.018

Table 1-Multiple regression analysis for ACE2. Independent predictors for circulating ACE2 activity were analyzed in the studied groups (CONT, CKD3-5 and CKD5D).

Table 2-Multiple regression analysis for ACE. Independent predictors for circulating ACE activity were analyzed in the studied groups (CONT, CKD3-5 and CKD5D).

CONCLUSIONS

- In CKD3-5 patients without history of CV disease, advanced age and male gender were predictors for an increased ACE2 activity and a decreased ACE activity.
- Diabetes was found as a predictor for an increased ACE2 and ACE activity.
- In CKD5D patients, additional predictors were ARBs treatment for ACE2 and ACEi treatment for ACE.

REFERENCES

- (1) Rice, G.I. et al. Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension 48, 914-20 (2006).
- (2) Epelman, S. et al. Detection of soluble angiotensin-converting enzyme 2 in heart failure: insights into the endogenous counter-regulatory pathway of the renin-angiotensin-aldosterone system. JACC 52, 750-4 (2008). (3) Roberts, M. et al. Angiotensin-converting enzyme 2 activity in patients with chronic kidney disease. Nephrol Dial Transplant 28, 2287-94 (2013).
- (4) Riera, M. et al. Effect of insulin on ACE2 activity and kidney function in the non-obese diabetic mouse. PLoS ONE 9(1): e84683 (2014).
- (5) Vickers, C. et al. Hydrolysis of biological peptides by human angiotensin converting enzyme-related carboxypeptidase. J Biol Chem 277, 14838-43 (2002).

