Effect of very low-protein diet vs. standard low-protein diet on renal death in patients with CKD: a pragmatic, randomized, controlled, trial

Vincenzo Bellizzi¹, Simona Signoriello², Roberto Minutolo³, Biagio Di İorio⁴, Paola Nazzaro⁴, Giuseppe Conte³, Paolo Chiodini⁴, Luca De Nicola³ for the ERIKA Study Group

¹Division Nephrology, University Hospital "San Giovanni di Dio e Ruggi d'Aragona" Salerno; ²Division Biostatistics and ³Division Nephrology, Second University of Naples; ⁴Nephrology Unit, County Hospital in Solofra (AV) Italy

Background

- Lowering of dietary proteins has been considered an effective clinical tool to reduce the negative progression of CKD
- Though a significant effect of dietary protein restriction in slowing down the GFR decline was not definitely demonstrated a reduction of protein intake has been shown to delay the start of renal replacement therapy in non diabetics
- No randomized clinical trial tested whether striking dietary protein restriction delays start of dialysis and affects survival in patients with advanced CKD

Aim

Compare the effects of a very low versus a standard low protein-diet on the outcome of patients with moderate to advanced CKD (stages 4 and 5) by means of a randomized, pragmatic, clinical trial

Subjects & Groups

- Unselected CKD 4-5 patients naïve for very low protein diet followed from at least 6 mts in renal clinics
- No severe undernutrition or severe active diseases
- No acute kidney injury in the previous 3 months
- Randomly (centralized and stratified by center and CKD stage) assignment to a dietary protein intake:
 - very low-protein diet, VLPD group, 0.35 g/kg ideal Body wt/day plus ketoacids
 - standard low-protein diet, LPD group, 0.60 g/kg ideal Body wt/day
- RCT registered ClinicalTrials.gov n° NCT00323713

Measurements

Registration:

- A. Start of chronic dialysis, end stage renal disease, ESRD
- B. All-cause death before and after dialysis start

Outcomes:

- A. Primary outcome was time to renal death, defined as the first event between ESRD or patient death
- **B.** Secondary outcomes were:
 - **ESRD**
 - overall mortality
 - adherence to diet

ERIKA study

■ **AIM** – compare effect sVLPD *vs.* LPD on

renal outcome in advanced CKD

■ DESIGN - pragmatic, multicenter,

■ PARTICIPANTS – adult, unselected,

■ ESCLUSION – severe undernutrition,

■ PRIMARY END-POINT - renal death

SECONDARY END-POINT - ESRD,

patient death for all causes

VLPD

--- LPD

first event between ESRD or patient death for all

randomized, controlled trial

severe active diseases

CKD stage 4-5

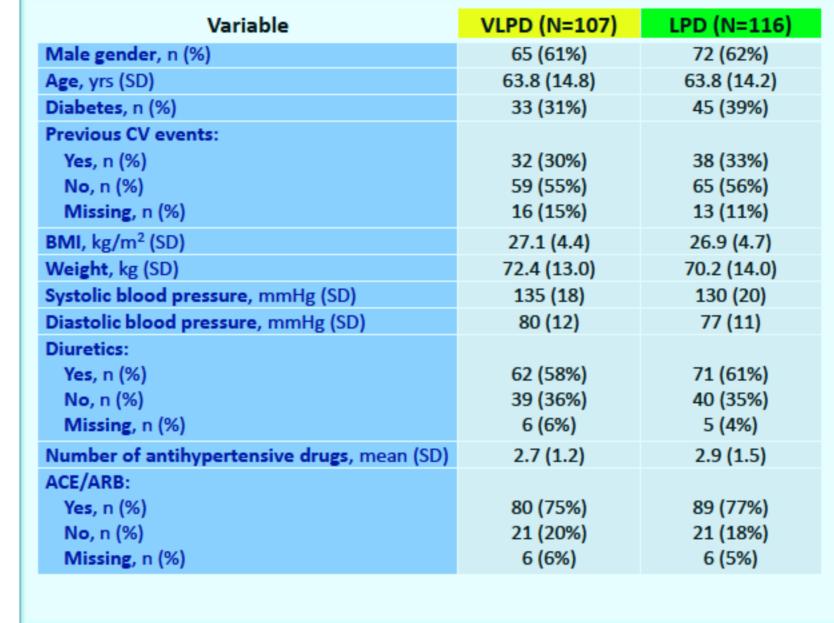
causes

Probability of event

Flow diagram

Enrollment Assessed for Eligibility (n= 297) Not meeting inclusion criteria (n= 37) Declined to participate (n= 33) Randomized (n= 227) Allocation LPD (n= 117) VLPD (n= 110) Follow-Up Lost immediately after randomization (n= 3) Lost immediately after randomization (n= 1) Analysed (n= 107) Analysed (n= 116) Renal Death 90 (84%) Renal Death 90 (78%) Death before Dialysis 20 (19%) Death before Dialysis 19 (16%) - Death in Dialysis 23 (21%) - Death in Dialysis 27 (23%)

Patients without Renal Death 26 (22%)


FU ≤ 6 mth (n=2)

FU > 24 mth (n=23)

- 6 mth < FU ≤ 12 mth (n=0)

12 mth < FU ≤ 24 mth (n=1)

Clinical Characteristics

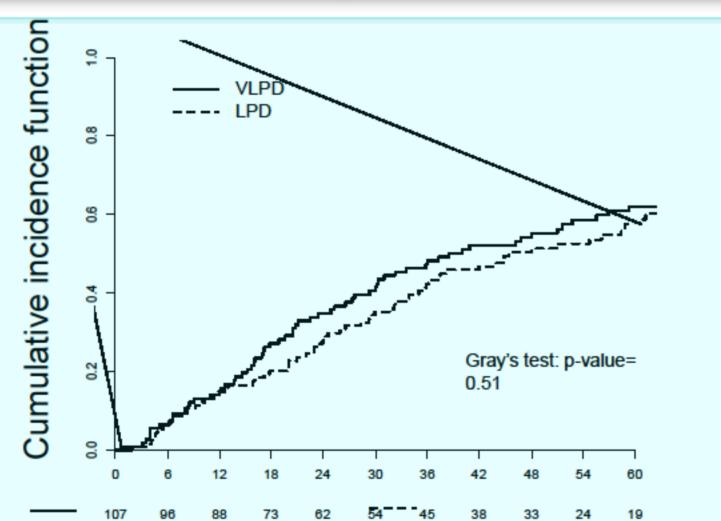
Laboratory Data

Variable	VLPD (N=107)	LPD (N=116)
Creatinine, mg/dL (SD)	3.9 (1.3)	3.7 (1.2)
GFR ^{MDRD} , ml/min (SD)	17.1 (6.6)	18.3 (6.9)
Creatinine Clearance, ml/min/1.73m² (SD)	21.3 (9.9)	22.1 (10.6)
Cholesterol, mg/dL (SD)	188 (41)	185 (37)
LDL, mg/dL (SD)	108 (34)	106 (33)
HDL, mg/dL (SD)	47 (13)	48 (15)
Triglycerides, mg/dL (IQR)	136 (98-188)	138 (99-185)
Hemoglobin, g/dL (SD)	11.9 (1.5)	11.9 (1.4)
Transferrin, mg/dL (SD)	217 (60)	224 (53)
Albumin, g/dL (SD)	3.9 (0.5)	4.0 (0.5)
Potassium, mEq/L (SD)	5.1 (0.7)	5.1 (0.8)
Calcium, mg/dL (SD)	9.3 (0.8)	9.4 (0.7)
Azotemia, mg/dL (SD)	133 (43)	130 (45)
Phosphate, mg/dL (SD)	4.4 (1.0)	4.4 (0.8)
PTH, pg/mL (IQR)	153 (89-267)	154 (77-246)
Proteinuria, g/die (IQR)	0.72 (0.30-1.89)	0.88 (0.20-1.84)
Protein intake, g/kg ibw/day (SD)	0.88 (0.23)	0.89 (0.28)
Creatinine excretion, mg/kg/die (SD)	16.3 (7.0)	16.0 (6.9)
Salt Intake, g/die (SD)	8.5 (4.4)	9.4 (6.9)
Phosphate Intake, mg/die (SD)	903 (642)	966 (501)

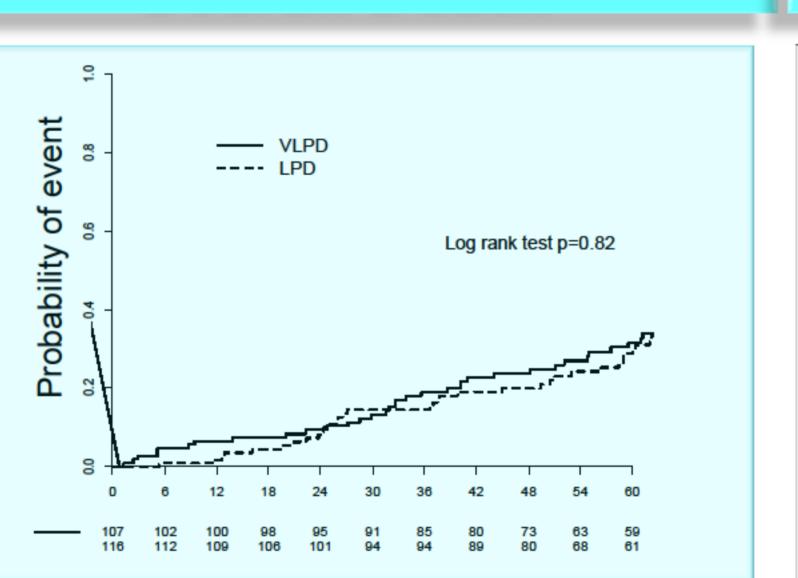
Renal Death

Log rank test p=0.28

Dialysis


atients without Renal Death 17 (16%)

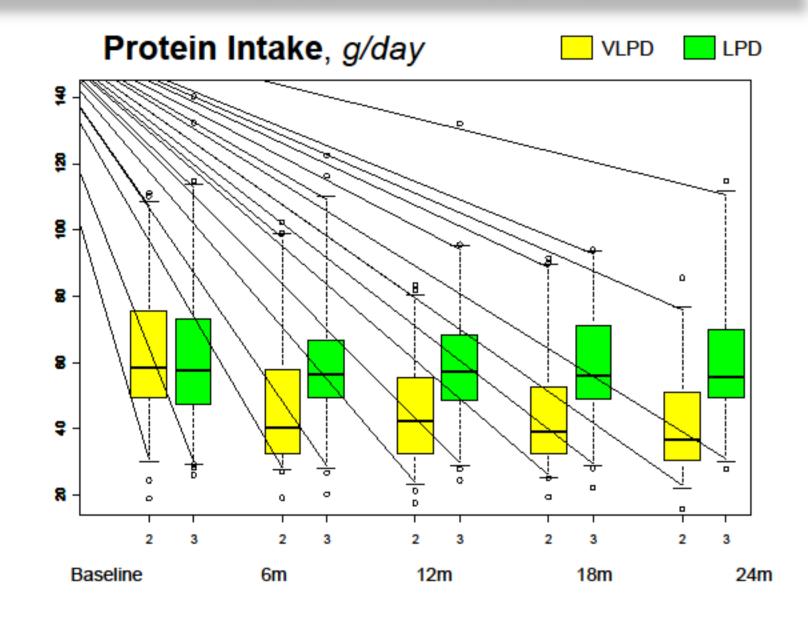
FU ≤ 6 mth (n=0)


FU > 24 mth (n=15)

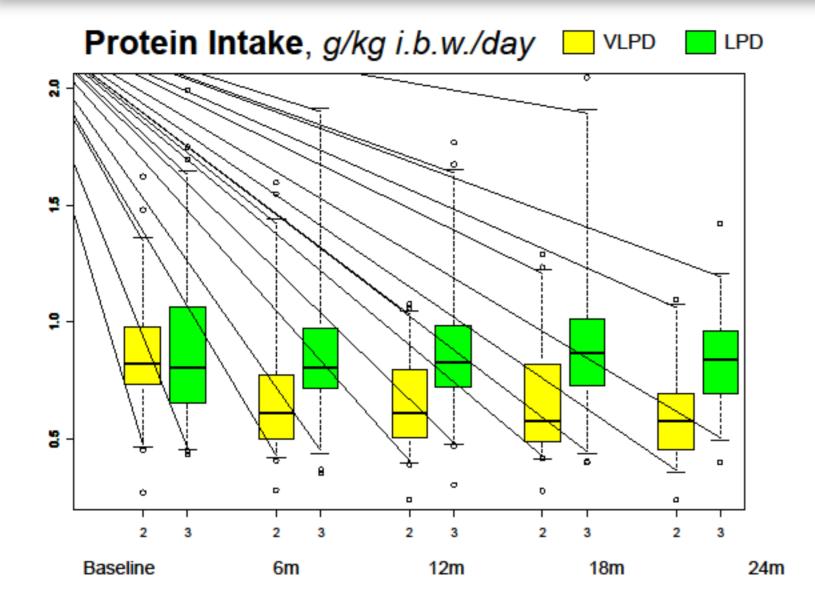
6 mth < FU ≤ 12 mth (n=0)

12 mth < FU ≤ 24 mth (n=2)

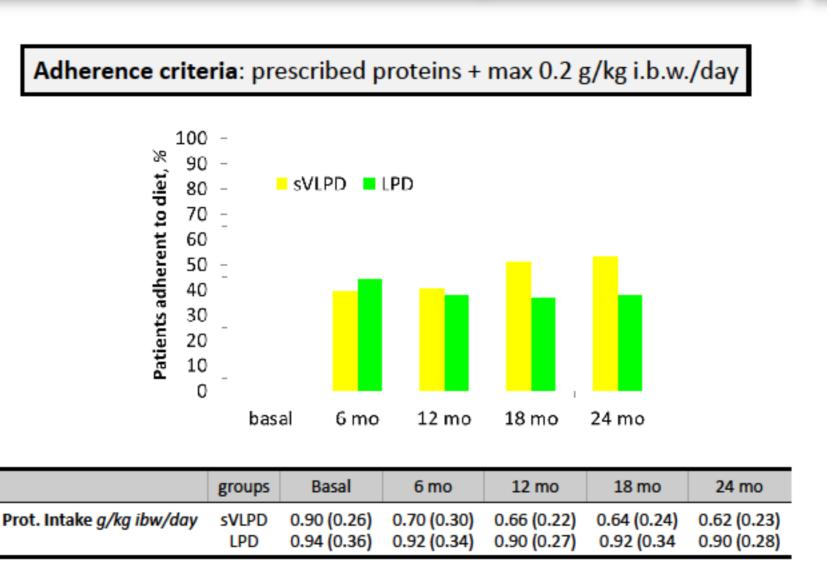
Overall Death

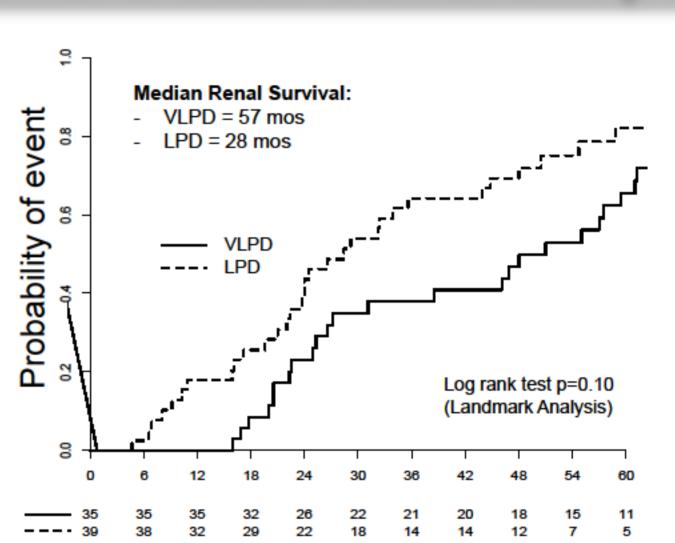


Efficacy Outcomes


	HR (95%CI)	HR** (95%CI)
Renal Death	1.17 (0.88-1.57)	1.09 (0.76-1.57)
Dialysis*	1.12 (0.81-1.56)	1.03 (0.70-1.51)
Overall Death	0.95 (0.62-1.45)	0.96 (0.58-1.60)
Renal Death adherent pts	0.66 (0.40-1.09)	0.58 (0.31-1.07)

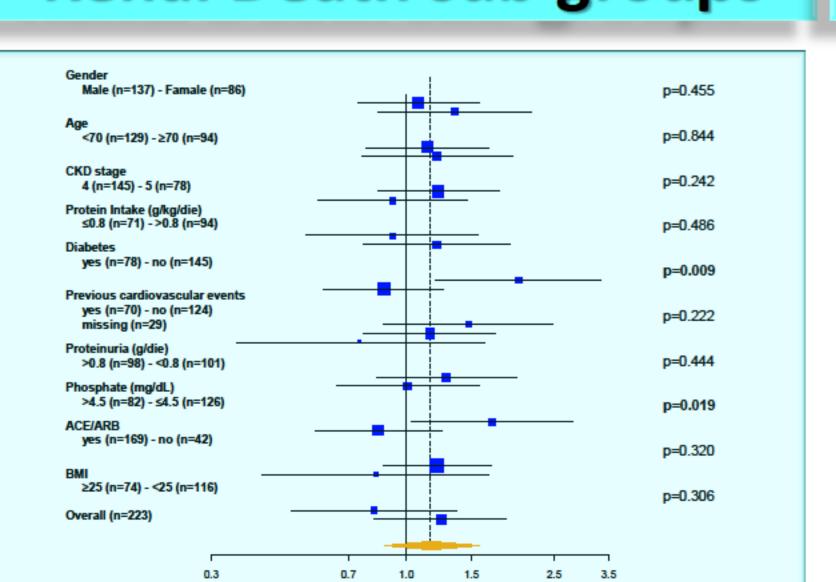
^{*} after adjustment by age, sex, CKD stage, protein intake, diabetes and proteinuria ** considering Death as competing event


Protein Intake


normalized Protein Intake

Adherence to proteins

Renal Death adherent pts



Renal Death sub-groups

Renal & Pts Outcomes

ERIKA study - conclusions

ERIKA study - limitations

- LPD sVLPD ∆GFR, ml/min - 1,08 [-3,44-0,65] - 1,38 [-3,87-0,23] Death rate, %/year 6 [4-10] 5 [3-8] 19 [12-19] ESRD rate, %/year 16 [12-20]
- In unselected CKD stage 4-5 patients, VLPD, as compared with standard LPD, does not reduce the risk of renal death
- Adherence to VLPD, and LPD as well, in unselected CKD patients is low and this may have influenced the results
- Other factors may have an impact on the effect of VLPD on renal death (i.e. previous rate of GFR decline; intensive nephrology care)
- In selected conditions, VLPD may work better (i.e. low phosphate) or may be even associated with a worst outcome (i.e. diabetes), but these conditions remain to be better evaluated
- **SELECTION** prevalent patients on tertiary, intensive nephrology care with good control of comorbidities
- **CONTROLS** intensive treatment
- PROGRESSION very slow GFR declining rate (including patients non progressor) and reduced renal death
- (power analysis) ■ OUTCOME - lower mortality rate (power analysis)
- PROTEIN INTAKE already low-normal protein intake at baseline
- ADHERENCE low adherence during the study (yes education at baseline; no adherence trial; no intensive recounselling during the follow-up; semi-personalized diet) and low actual reduction of protein intake

^{***} after adjustment by age, sex, CKD stage, diabetes and proteinuria