Chiara Alfarano¹, Marc Guerard¹, Claire Abadie², Catherine Deloche², Jean-Marc Combette², Philippe Lluel¹

¹ Urosphere, Toulouse, France; ² Solid Drug Development, Geneva, Switzerland

Introduction

- + The pathophysiology of ischemic acute kidney injury is very complex and still not completely understood.
- + Experimental models of renal ischemia reperfusion (IR) injury in rodents are widely used to study the effect of therapeutic and preventing strategies.
- + Previous studies demonstrated that the blockade of c-Jun N-terminal kinase (JNK) signaling pathway can prevent acute tubular necrosis and renal dysfunction induced by IR injury¹.

Objective

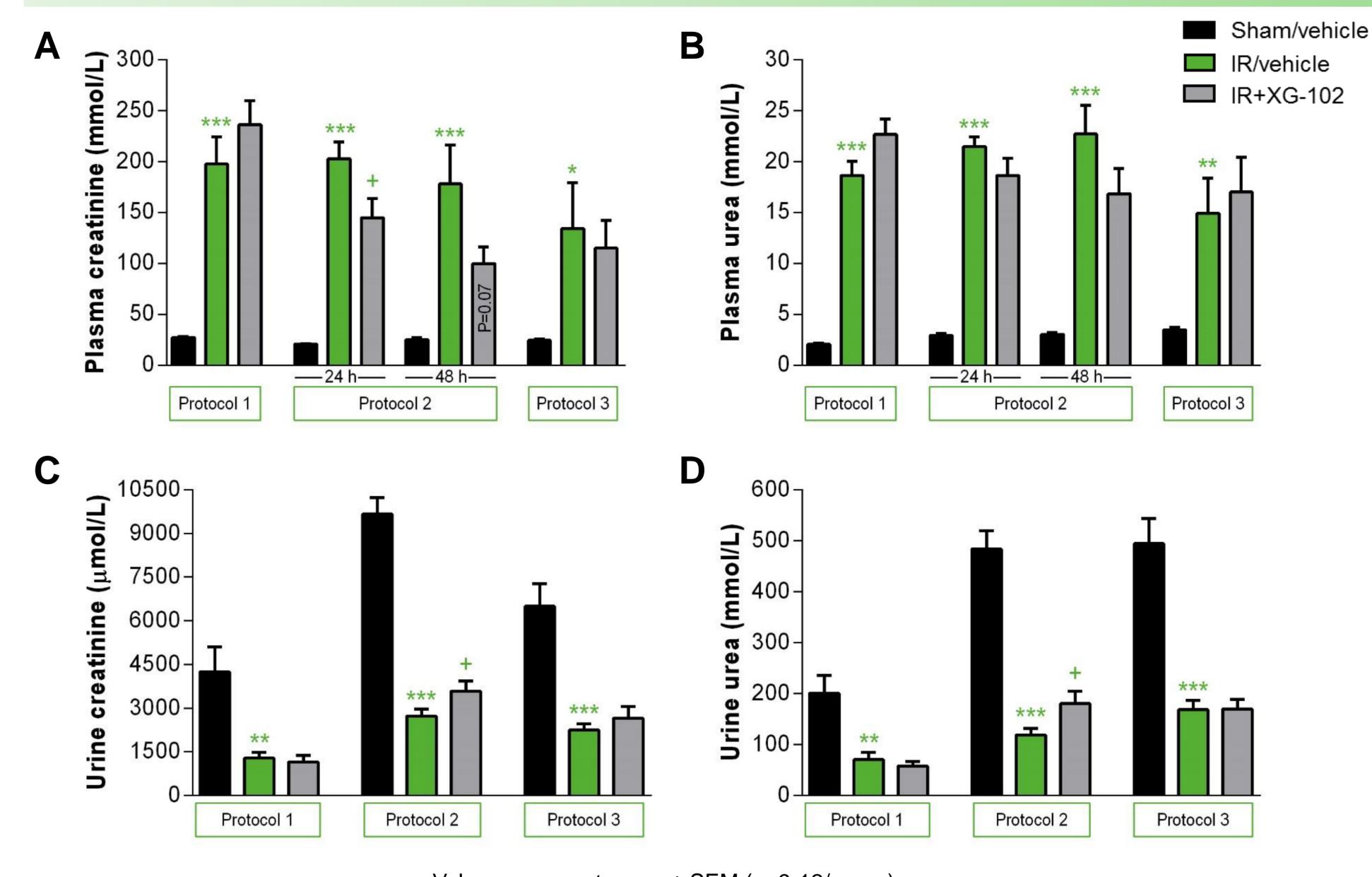
The aim of our study was to evaluate the effect of JNK inhibitor (XG-102) on kidney function and histological lesions induced by bilateral kidney IR injury in rats.

Methods

- + Animals: rat, Sprague-Dawley, males (9-12/group).
- + Surgery: bilateral kidney IR injury by clamping of renal pedicles.
- + Study design:

Drotocol #	Ischemia	Reperfusion	XG-102 administration		
Protocol #			Dose (mg/kg)	Timing	
Protocol 1	40 min	24 h	2	20 min after IR	
Protocol 2	40 min	48 h	8	1 h before IR	
Protocol 3	40 min	72 h	8	24 h after IR	

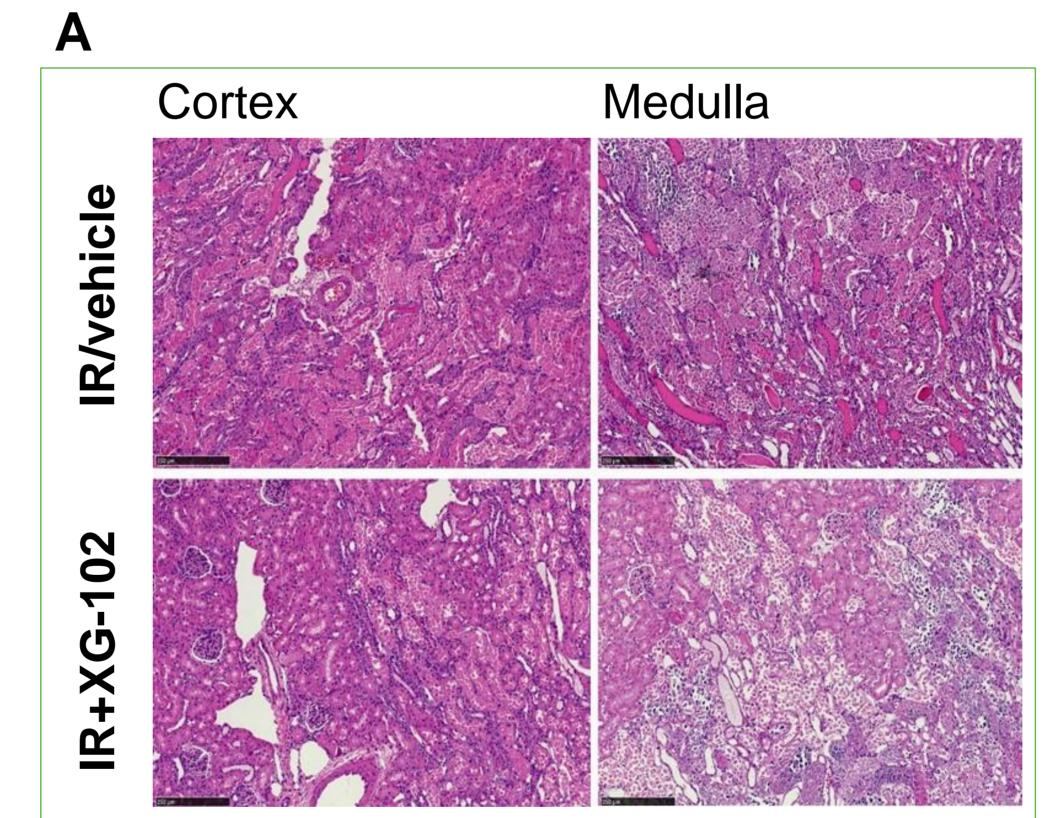
+ Experimental groups:


Conclusions

	IR		For each protocol:		
Group		Treatment (i.v)	+ Sham animals underwent the		
			same surgery w/o clamping of		
Sham	no	vehicle	kidney pedicles.		
IR	ves	vehicle	+ XG-102 or its vehicle (NaCl 0.9%)		
ID . VC 400		VC 100	were administered into the tail vein.		
IR+XG-102	yes	XG-102	+ 9-12 animals per group		

- + Kidney function biomarkers: creatinine and urea using ABX Pentra 400 clinical chemical analyser.
- + **Histology:** tubular damages evaluation by score system on hematoxyline/eosin (HE) staining of kidney sections.

Results


Effect of XG-102 on kidney function biomarkers

Values represent mean ± SEM (n=9-12/group)
*P<0.05; **P<0.01;***P<0.001 *v*s Sham/vehicle. +P<0.05 *v*s IR/vehicle (unpaired *t*-test w or w/o Welch's correction)

- + In male SD rats, bilateral kidney IR induced:
 - + a significant increase of plasmatic creatinine (A) and urea (B);
 - + a significant decrease of urinary creatinine (C) and urea (D).
- + XG-102 administered 1 hour before ischemia (**Protocol 2**) significantly reduced plasma creatinine and increased creatinine and urea excretion.
- + No significant effect was observed in protocol 1 and 3.

Effect of XG-102 on tubular damages

	Surgery and Treatment		Tubular changes			Total Tube Is	
Protocol #			Tubular degeneration/ necrosis	Tubular cast	Basophilic tubules	Total Tubula score	
	Sham/vehicle	mean	0.00	0.00	0.25	0.25	
<u> </u>		±SEM	0.00	0.00	0.13	0.13	
Protocol 1	IR/vehicle	mean	3.45 ***	3.00 ***	1.36 ***	7.82 ***	
ğ		±SEM	0.16	0.00	0.20	0.30	
<u> </u>	IR/XG-102	mean	2.67 +	2.50 +	1.33	6.50 +	
		±SEM	0.19	0.15	0.19	0.23	
	Sham/vehicle	mean	0.00	0.00	0.18	0.18	
5		SEM	0.00	0.00	0.12	0.12	
Protocol 2	IR/vehicle	mean	3,00 ***	3,25 ***	1,67 ***	7,92 ***	
¥		±SEM	0.17	0.13	0.14	0.19	
<u> </u>	IR/XG-102	mean	2,25 ++	2,67 +	2.00	6,92 +	
		±SEM	0.13	0.14	0.12	0.26	
	Sham/vehicle	mean	0.00	0.00	0.10	0.10	
8		±SEM	0.00	0.00	0.10	0.10	
Protocol	IR/vehicle	mean	3,33 ***	2,44 ***	2,00 ***	7,78 ***	
Otc		±SEM	0.17	0.24	0.17	0.28	
<u>r</u>	IR/XG-102	mean	2,27 ++	2.36	2.27	6.91	
		±SEM	0.20	0.03	0.20	0.37	
Values represent moon + SEM/n_0 12/group)							

- Values represent mean ± SEM(n=9-12/group)
 ***P<0.001 vs Sham/vehicle
- +P<0.05; ++ P<0.01 vs IR/vehicle (Mann Whitney test)
- A Representative images of HE stained kidney sections

 B Quantification of tubular damages by score system
- D Quantincation of tubular damages by score system
- + In male SD rats, bilateral kidney IR induced a significant increase of tubular degeneration and necrosis, tubular cast and basophilic tubules
- + XG-102 reduced the severity of tubular damages. In XG-102 treated rats, the number of tubules affected was lower and the lesions were mostly limited to the cortico-medullary junction and not extended to the superficial cortex compared to vehicle treated animals.

Bilateral renal IR in rats induced impaired kidney function and severe tubular damages. XG-102 administered i.v. before or after IR reversed kidney tubular lesions induced by IR injury. However, XG-102 seems to be more efficient when administered preventively (1 hour before IR; Protocol 2) showing a beneficial effect on both kidney function and tubular damages. These results suggest that JNK inhibition before IR injury can represent a pharmacological strategy to prevent acute kidney injury occurring in humans.

References

1) Kanellis J et al, Nephrol Dial Transplant, 25:2898-908, 2010.

www.urosphere.com

