Autoimmunity and cancer immunosurveillance in the biliary tree

Juliette Paillet¹⁻³, Sarah Lévesque¹⁻³, Julie Le Naour¹⁻³, Céleste Plantureux¹⁻², Pamela Caudana⁴, Jimena Tosello Boari⁴, Norma Bloy¹⁻³, Isabelle Martins¹⁻², Paule Opolon⁵, Agathe Delaune⁶, Noémie Robil⁶, Pierre de la Grange⁶, Juliette Hamroune⁷, Franck Letourneur⁷, Patrick S.C. Leung⁸, M. Eric Gershwin⁸, Jie S. Zhu⁸, Mark J. Kurth⁸, Bouchra Lekbaby⁹, Jérémy Augustin⁹, Youra Kim¹⁰, Shashi Gujar^{10,11}, Cédric Coulouarn¹², Laura Fouassier⁹, Laurence Zitvogel¹³, Eliane Piaggio¹⁴, Chantal Housset^{9,15}, Patrick Soussan⁹, M. Chiara Maiuri¹⁻², Guido Kroemer^{1-2,16-19}, Jonathan Pol¹⁻²

- 1 Centre de Recherche des Cordeliers, INSERM U1138, Université de Paris, Sorbonne Université, Paris, France 8 University of California Davis, Davis, CA, USA 2 Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- 3 Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
- 4 Institut Curie, PSL Research University, INSERM U932, Paris, France
- 5 Gustave Roussy Cancer Campus, Villejuif, France 6 GenoSplice Technology, Paris, France
- 7 INSERM U1016, Institut Cochin, Paris, France

ntroduction Primary biliary cholangitis (PBC)¹ and primary sclerosing cholangitis (PSC)² are two chronic inflammatory diseases of the biliary tract. Chronic inflammation is known to be one of the main risk factors for cancer onset. In this line, PSC is the first etiology of cholangiocarcinoma (CCA)³ in Western countries. But surprisingly, patients with PBC close to never develop CCA. Since PBC harbors an autoimmune component, we hypothesised that PBC-associated autoimmunity could fuel cancer immunosurveillance and thus prevent CCA appearance.

1. Validation of the murine models of cholangitis

means of ANOVA test Tukey's pairwise multiple comparison.

- 9 Centre de Recherche Saint-Antoine, INSERM U938, Sorbonne Université, Paris, France 10 Dalhousie University, Halifax, NS, Canada
- 11 Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- 12 INSERM U1241, Université de Rennes, INRA, Institut NuMeCan, Rennes, France
- 13 INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France 14 Centre d'Investigation Clinique Biotherapie CICBT 1428, Institut Curie, Paris, France

2. PBC protects against CCA in a specific & T-cell dependent manner

Figure 2. A. Experimental scheme. Growth of subcutaneous syngeneic CCA tumors in control, PSC or PBC mice (B-D) or PBC mice without or with injections of antibodies targeting either CD4 and/or CD8 or CD20, to deplete CD4⁺ and/or CD8⁺ T or B cells, respectively (H-M). Growth of subcutaneous syngeneic tumors of hepatocellular carcinoma (HCC) (E), non-small-cell lung cancer (NSCLC) (F), and fibroscarcoma (G) in control and PBC mice. Graphs show mean (± SEM) (B, E-H, K) and individual (C-D, I-J, L-M) tumor growth curves. P-values were calculated by means of a linear mixed-effect model.

15 AP-HP, Ref. Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, Saint-Antoine Hospital, Paris, France

16 Institut Universitaire de France, Paris, France

17 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France

18 Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China 19 Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden

3. PBC protection against CCA relies on type-1/2 immune responses

4. Hepatic and CCA tumor tissues share similar enriched TCR clonotypes upon PBC

Conclusion Our data demonstrated that PBC protects against CCA outgrowth through an active mechanism mainly relying on both CD4⁺ and CD8⁺T-cells, and in a lesser extent on B-cells. PBC-associated antitumor activity was specific to CCA. Type-1 and -2 immune responses, relying on the cytokines IFNy and IL4 respectively, were mediating CCA immunosurveillance upon PBC. Finally, single-cell TCR/RNA-sequencing analyses revealed an enrichment of T cells with identical TCR in both liver and ectopic CCA tumor of a PBC mice. Altogether, our data provide mechanistic insights into an overlap between autoimmunity and cancer immunosurveillance in the biliary tree.

Figure 3. A. Experimental scheme. Relative expression of Ifng (B) and II4 (E) genes measured by RT-qPCR within CCA tumors from control, PBC and PSC mice at day 56. Graphs show individual and mean (± SD) values. P-values were calculated by ANOVA with Tukey's pairwise multiple ^b comparison. **C-D, F-G.** Growth of subcutaneous syngeneic CCA tumors in control and PBC mice, or PBC mice injected with antibodies targeting either IFNy or IL4. Graphs show mean (± SEM) (C, F) and individual (D, G) tumor growth curves. P-values were calculated by means of a linear mixed-effect model.

Figure 4. T cell clones infiltrating CCA, hepatic and blood tissues of a PBC mouse were characterized by single-cell TCR sequencing coupled with single-cell RNAsequencing. A. Venn diagram showing the number of TCR clonotypes overlapping between tumor, liver and blood. **B.** Number of TCR clonotypes enriched (i.e. >0,1% of T cells) only in tumor (n=103), or liver (n=58), or both tissues (n=25). C. Proportion in the liver versus CCA tumor of each of the 25 TCR clonotypes enriched and shared between both tissues. **D.** Phenotypic clustering of total T lymphocytes sorted out from CCA and hepatic tissues of a PBC mouse. E. Phenotypic clustering of the 25 TCR clonotypes enriched in both CCA tumor and liver upon PBC.

-03

ponsol by: