EFFICACY OF FERRIC CITRATE HYDRATE IN PERITONEAL DIALYSIS PATIENTS WITH RENAL ANEMIA.

Kazuki Koga¹, Misako Yuasa¹, Motonari Kurahashi¹, Fumiko Kuwahara¹, Saeko Miura¹, Kenji Harada¹, Kousuke Fukuoka¹, Hidetoshi Kanai¹.

¹ Department of Nephrology, Kokura Memorial Hospital, Kitakyushu, Japan

Introduction and objectives

Ferric citrate hydrate(FCH) is a novel iron-based phosphate binder with shown efficacy and additional effects on iron stores and use of erythropoiesis-stimulating agents(ESAs) in patients with dialysis¹⁾. The aim of this study is to assess the effect of FCH against iron stores and ESAs in peritoneal dialysis patients.

We performed a retrospective analysis of 34 peritoneal dialysis patients prescribed with FCH in a single center from June 1, 2014 to March 31, 2016. We provided detailed analyses of monthly change in serum phosphate, serum iron parameters, hemoglobin and ESA usage over 6 months. Statistical analysis was performed using the JMP® 10 software(SAS Institute Inc., Cary, NC, USA). Differences between before and after the administration of FCH were examined for statistical significance using Dunnett's test.

Results

Note: The weekly dose of ESA was converted into erythropoietin-beta units. (darbepoetin alfa (DA) : continuous erythropoietin receptor activator (CERA) =1:1 DA/CERA: erythropoietin-beta=200:1)

Table 1. Baseline characteristics of subjects (n=34)

Age, yr (mean ುD)	64.4		
Sex (male / female)	M 21(62%) / F13(38%)		
Systolic /Diastolic BP (mmHg)	139		
BW (kg)	62.4		
PD duration (month)	34.3		
Etiology of ESRD,n(%)			
Diabetic nephropathy	11(32%)		
Nephrosclerosis	15(44%)		
Chronic GN	5(15%)		
Other	3(9%)		
Efficacy parameters (mean \pm D)			
ESA dose(U/wk)	10,088		
Transferrin saturation (TAST)	30.8		
(%)			
Ferritin (ng/mL)	146.8		
Hemoglobin(Hb) (g/dL)	10.0		
Serum Phosphate (mg/dL)	5.8		

Figure 1. Effect of 6-month administration of FCH on serum phosphate(A), Hb(B), ESA dose(C), Ferritin(D), Tsat(E) and ERI(Erythropoetin resistance index)(F). FCH increased hemoglobin levels (B), ferritin(D) and TSAT levels(E) over 6 months. FCH reduced ESA dose (C) and reduced ESA resistance index(ERI)(F). ERI was calculated as the ration between the weekly weight-adjusted ESA dose and Hb concentration. All values are expressed as the means \pm SEM. *p<0.05, **p<0.01, ***p<0.001

Table 2. Variation of FCH dose over 6 months

Initial dose (mg)	n	6 months after dose (mg)	n
500	1	500 (maintain)	1
750	29	500 (down)	1
		750 (maintain)	21
		1,500 (Up)	2
		*0(withdrawal)	5
1,500	8	1,500 (maintain)	6
		750 (down)	2

Figure 2. Analysing Δ ERI by iron parameters at baseline, low Hb level (<10 g/dL)(p=0.04)(A) and low ferritin levels (<100 ng/ml)(p=0.046)(B) statically improved Δ ERI.

Conclusion

Peritoneal dialysis I

Kazuki Koga

In peritoneal dialysis patients, treatment with FCH as a phosphate binder resulted in increased iron parameters and reduced ESA use while maintaining hemoglobin levels over 6 months. The efficacy of FCH against renal anemia was demonstrated.

References

1) Yokoyama K., Akiba T., Fukagawa M., Nakayama M., Sawada K., Kumagai Y., et al. Long-term safety and efficacy of a novel iron-containing phosphate binder, JTT-751, in patients receiving hemodialysis. J Ren Nutr 24:261-267,2014.

