

Validation of GTV delineation based on MRI, CT or FDG-PET/CT in head and neck cancer

Zhe WANG¹, Xicheng WANG¹, Yi KONG¹, Zhen WU¹, Xiaokang ZHENG²

- 1. The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, China
- 2. Nanfang Hospital of Southern Medical University, 510515, Guangzhou, China

OBJECTIVES	METHODS
To compare F-18-fluoro-2-deoxy-D-glucose	Twelve HNC models were established in New Zealand rabbits with transplantation of VX2
positron emission tomography (FDG-	cell line. Modeling was successful in nine rabbits. Each rabbit received FDG-PET/CT, MR
PET)/computed tomography (CT), magnetic	and CT scan in the same immobilization and position within 24 hours. Then all rabbits
resonance (MR) and CT alone which	were sacrificed and cryopreserved, which underwent cross-sectional autopsy in the same
based on the measurements of tumor	position of imaging scan with sectional thickness of 4.0 mm. Autopsying was successful

volume in rabbits bearing head-and-neck cancer (HNC) with cross-sectional autopsy that to validate the gross tumor volume (GTV) delineation based on above three imaging methods. in six rabbits. The GTV was delineated based on FDG-PET/CT, MR, CT and crosssectional autopsy as GTV_{PET/CT}, GTV_{MR}, GTV_{CT} and GTV_{SA}, respectively. After threedimensional coregistration, the GTV defined independently based on MR, CT and FDG-PET/CT was validated with cross-sectional specimen via comparing the volume, overlap volume and volume difference ratio (VDR) during the GTVs.

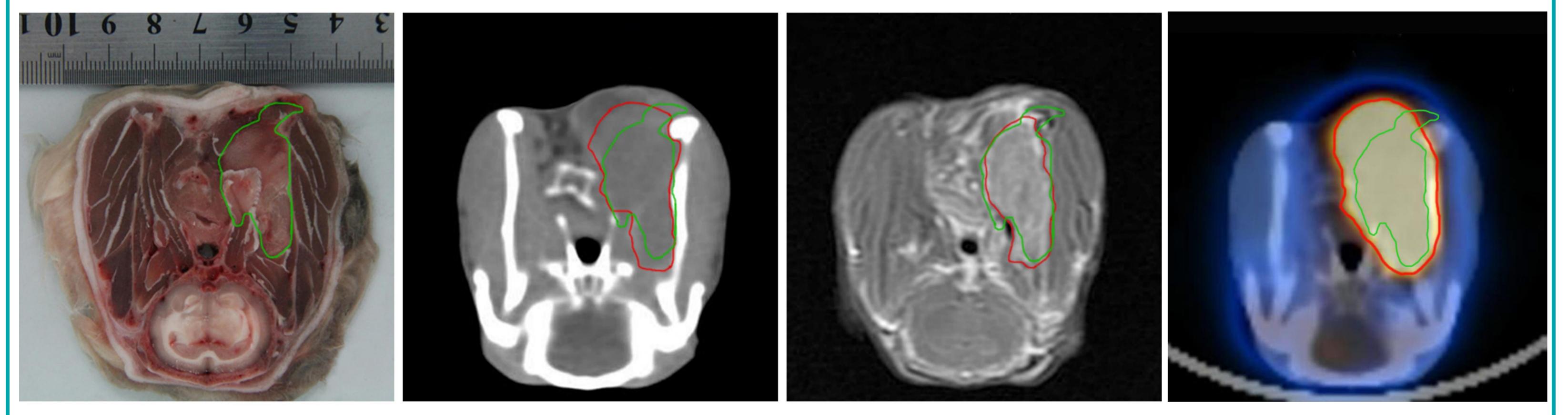
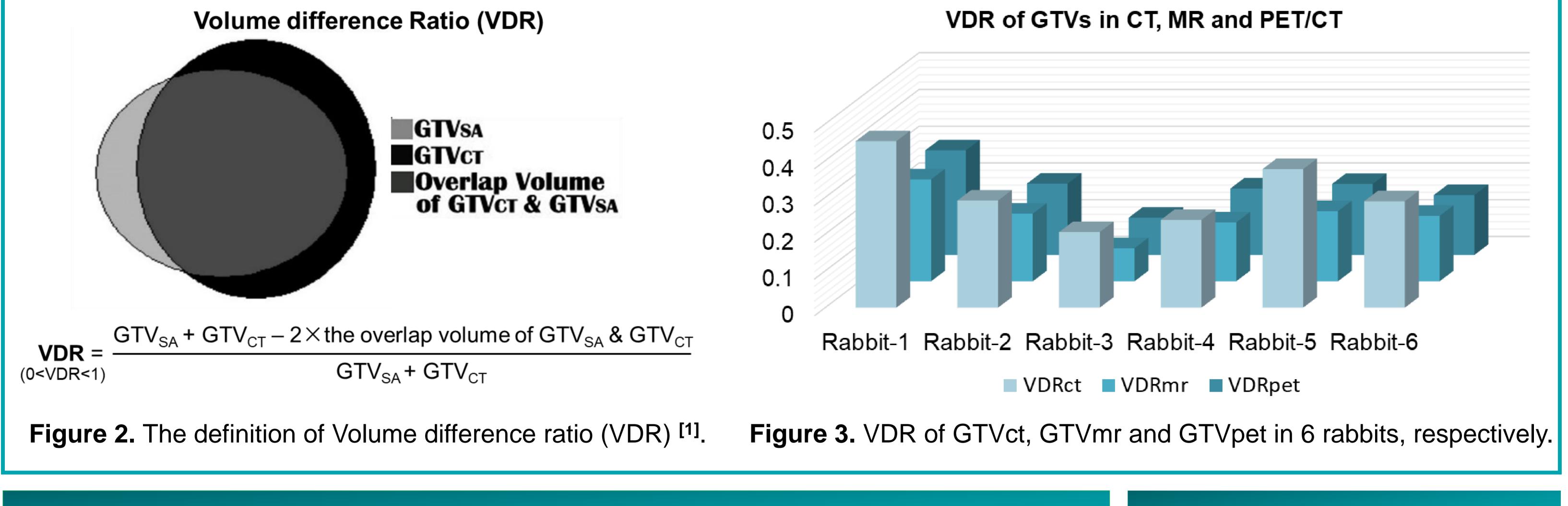
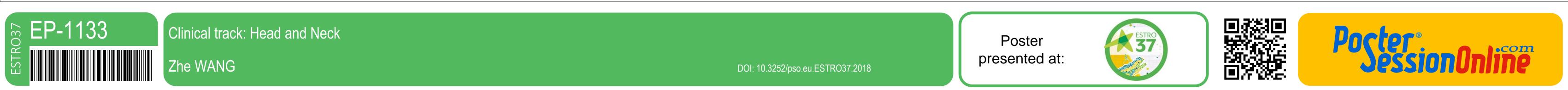



Figure 1. Gross tumor volume (GTV) was delineated on CT, MRI and cross-sectional autopsy image, respectively.


RESULTS

For the VX2 tumors in 6 rabbits, no significant difference (P>0.7) was observed between average GTVs delineated at cross-sectional autopsy (8.11 cm³) with CT (8.02 cm³), MR (7.89 cm³) and PET/CT (8.65 cm³), respectively. However, significant difference (P=0.023) was showed during average overlap volume (OV) of GTV_{SA} and GTV_{CT} (OV_{CT}, 5.57 cm³), OV of GTV_{SA} and GTV_{MR} (OV_{MR}, 6.51 cm³) and OV of GTV_{SA} and GTV_{PET/CT} (OV_{PET/CT}, 6.7683 cm³). Average OV_{CT} was smaller, but no significant difference (P=0.032 and P=0.047, respectively) was observed between average VDR of GTV_{CT} (VDR_{CT}, 0.2970) and VDR of GTV_{MR} (VDR_{MR}, 0.1800) and VDR of GTV_{PET/CT} (VDR_{PET/CT}, 0.1877), respectively. But no significant difference (P=1.000) was discovered between average VDR MR and VDR_{PET/CT}.

In six rabbits for which the crosssectional specimens were available, GTVs at CT, MR, FDG-PET/CT and cross-sectional autopsy were similar, whereas FDG-PET/CT and MR were found to be more accurate modality. However the GTV delineation of FDG-PET/CT in head and neck cancer is not superior to MR.

CONCLUSIONS

References: 1. Zheng X K, Chen L H, Wang Q S, et al. Influence of FDG-PET on computed tomography-based radiotherapy planning for locally recurrent nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys. 2007, 69(5): 1381-1388.

