Clinical and laboratorial evaluation of recombinant FVIII Fc fusion protein treatment in hemophilia A patients: a real-life experience in a single center

ECHENAGUCIA MARION, BOADAS APSARA, JIMENEZ TIBISAY, DOS SANTOS MARIA, HERNANDEZ MARIA, ACOSTA CARLOS, RUIZ-SEAZ ARLETTE
BANCO MUNICIPAL DE SANGRE DEL D.C. – CENTRO NACIONAL DE HEMOFILIA
CARACAS, VENEZUELA

INTRODUCTION AND OBJECTIVES

The mainstay of treatment for hemophilia A (HA) is replacement therapy with FVIII concentrates. An adequate laboratory control is necessary for optimization of dosing. New modified rFVIII Fc fusion protein (rFVIIIFc) was recently approved for hemophilia A treatment, and in our hemophilia center we started using it thanks to a humanitarian aid from the World Federation of Hemophilia. The aim of this study was to evaluate the clinical efficacy of the product and laboratory behavior using the available methods.

TABLE 1: CHARACTERISTICS OF PATIENTS AND CLINICAL BEHAVIOR

<table>
<thead>
<tr>
<th>Severe Hemophilia A patient (n)</th>
<th>Moderate Hemophilia A patient (n)</th>
<th>Median age</th>
<th>Dose (IU/Kg(^{-2}))</th>
<th>Clinical response</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>3</td>
<td>27.5 (11 – 58)</td>
<td>40.4 (20 – 59)</td>
<td>Excellent = 17 (70.8%)</td>
</tr>
</tbody>
</table>

We treated 24 patients with hemophilia A (21 severe and 3 moderate) the median age was 27.5 years (range=11-58), patients came to our center for treatment of bleeding episodes, post surgery or secondary prophylaxis. The dose used varied from 20 to 59 IU kg\(^{-1}\) and the initial regimen for prophylaxis was every four days. We evaluate the clinical efficacy and monitoring FVIII levels using one stage-OSA (aPTT-Reagent, HemosIL, Italy) and chromogenic substrate assay-CSA (Electrochrome, Hemosil, Italy) before the infusion of FVIII concentrates and after 1, 3, and at different times up to 96 hours.

TABLE 2: DIFFERENCES BETWEEN METHODS IN POST INFUSION PLASMA SAMPLES

<table>
<thead>
<tr>
<th>Level FVIII 1h post (IU/dl(^{-1}) OSA</th>
<th>Level FVIII 1h post (IU/dl(^{-1}) CSA</th>
<th>Mean difference Between methods 1h post (%)</th>
<th>Level FVIII 3h post (IU/dl(^{-1}) OSA</th>
<th>Level FVIII 3h post (IU/dl(^{-1}) CSA</th>
<th>Mean difference Between methods 3h post (%)</th>
<th>Level FVIII 24h post (IU/dl(^{-1}) OSA</th>
<th>Level FVIII 24h post (IU/dl(^{-1}) CSA</th>
<th>Mean difference Between methods 24h post (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>102.3</td>
<td>29.8 (17.1 – 57.4)</td>
<td>70.2</td>
<td>98.9</td>
<td>28.1 (15.1 – 56.3)</td>
<td>26.5</td>
<td>27.8</td>
<td>5.2 (2.3 – 30)</td>
</tr>
</tbody>
</table>

CONCLUSIONS

The rFVIIIFc is an excellent treatment option however there are some issues to be considered regarding the laboratorial behavior. Based in these results prophylactic regimen was modified in some patients. Clinical and laboratory results could allow us to avoid overdosing and to modify prophylactic regimen in order to optimize the use of this product.

REFERENCES