
Poster presented at:

SC
I20

24

Regression-Based Proximal Causal Inference

Jiewen Liu1, Chan Park2, Kendrick Li3, Eric J. Tchetgen Tchetgen2
1Department of Biostatistics, Perelman School of Medicine & 2Department of Statistics and Data Science, Wharton

School, University of Pennsylvania; 3Department of Biostatistics, St. Jude Children’s Research Hospital

Background & Proxy Variable

• Confounding proxies (e.g. negative controls) are increasingly used to detect unmeasured confounding U in
observational studies.

• Outcome confounding proxy (W ) refers to a variable that shares the same potential source of confounding bias as a
treatment (A) - outcome (Y ) of primary interest but is not causally related to the treatment (A).

• Treatment confounding proxy (Z) refers to a variable that shares the same potential source of bias as the (A)-(Y )
relationship of primary interest but is not causally related to the outcome (Y ).

Figure 1:Three Common DAGs which PCI Applies to.

Previous Work of Proximal Causal Inference (PCI)

• Miao et al. (2018) studied the identification of causal effect with proxy variables. Tchetgen
Tchetgen et al. (2023) developed proximal causal inference (PCI) to de-bias confounded causal
effect estimates by leveraging a pair of proxy variables.

• However, implementing PCI involves solving complex integral equations that are typically
ill-posed. Under linear models for outcome confounding proxy W and primary outcome Y , the
proximal g-computation algorithm can be implemented by a two-stage OLS (see e.g. Tchetgen
Tchetgen et al, 2023).

Continuous (Y , W ) with Identity Links & Count (Y , W ) with Log Links

Assumptions 1
E [Y |A, Z , U ] = β0 + βaA + βuU ; E [W |A, Z , U ] = α0 + αuU

Result 1
E [Y |A, Z ] = β∗

0 + β∗
aA + β∗
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0 = β0 − βu
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, provided that αu ̸= 0.

Assumptions 2
log(E [Y |A, Z , U ]) = β0 + βaA + βuU ; log(E [W |A, Z , U ]) = α0 + αuU
U |A, Z ∼ E [U |A, Z ] + ϵ; E [ϵ] = 0; ϵ⊥⊥A, Z ; the marginal distribution of ϵ is unrestricted.
Result 2
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, provided that αu ̸= 0.

Results 1 and 2 suggest a two-stage linear regression and Poisson regression approach.

Binary (Y , W ) with Logit Links

Assumptions 3
logit(Pr(Y = 1|A, Z , W , U)) = β0 + βaA + βuU + βwW
logit(Pr(W = 1|A, Z , Y , U)) = α0 + αuU + αyY
U |A, Z , Y = 0, W = 0 ∼ E [U |A, Z , Y = 0, W = 0] + ϵ; E [ϵ] = 0;
ϵ⊥⊥ (A, Z )|Y = 0, W = 0; the distribution of ϵ|Y = 0, W = 0 is unrestricted.

Result 3
logit(Pr(Y = 1|A, Z , W )) = β∗
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, provided that αu ̸= 0.

Result 3 suggests a two-stage logistic regression approach.

Implement PCI through Two-Stage Generalized Linear Models (GLMs)

We develop a two-stage regression approach to implement PCI
• (i): Applicable to continuous, count, and binary outcomes cases, when identity, log, logit link
functions, or their combinations are applied. Relevant to a wide range of real-world applications.

• (ii): Easy to implement using off-the-shelf software for GLMs.

Figure 2:S denotes the proximal control variable for U .

Application: Right Heart Catheterization (RHC) Treatment Effect

As error-prone snapshots of the underlying physiological state over time, physiological
measurements (ph1, hema1) and (pafi1, paco21) are considered as confounding proxies (W )
and (Z ), respectively.
(W ): ph1, hema1 encoded by 1 if greater than the median; W = 0 if (ph1=0,hema1=0);
W = 1 if (ph1=1,hema1=0); W = 2 if (ph1=0,hema1=1); W = 3 if (ph1=1,hema1=1).
(Z): pafi1, paco21. (Y ): 1 if the patient alive at 30th day. (A): 1 if the RHC is performed.
Two-stage logistic regression estimation:
logit(Pr(W = k|A, Z , X , Y )) = α∗

0k + α∗
akA + α∗

zkZ + α∗
xkX + α̃ykY , where k ∈ {1, 2, 3},
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u
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+
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a = βa.

Estimates: β̂a(Proximal) = −0.40 (−0.56, −0.26), β̂a(MLE ) = −0.36 (−0.51, −0.21).
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