Regression-Based Proximal Causal Inference

Jiewen Liu¹, Chan Park², Kendrick Li³, Eric J. Tchetgen Tchetgen²

Department of Biostatistics, Perelman School of Medicine & ²Department of Statistics and Data Science, Wharton School, University of Pennsylvania; ³Department of Biostatistics, St. Jude Children's Research Hospital

ARXIV Link

Background & Proxy Variable

- Confounding proxies (e.g. negative controls) are increasingly used to detect unmeasured confounding U in observational studies.
- Outcome confounding proxy (W) refers to a variable that shares the same potential source of confounding bias as a treatment (A) outcome (Y) of primary interest but is not causally related to the treatment (A).
- Treatment confounding proxy (Z) refers to a variable that shares the same potential source of bias as the (A)-(Y) relationship of primary interest but is not causally related to the outcome (Y).

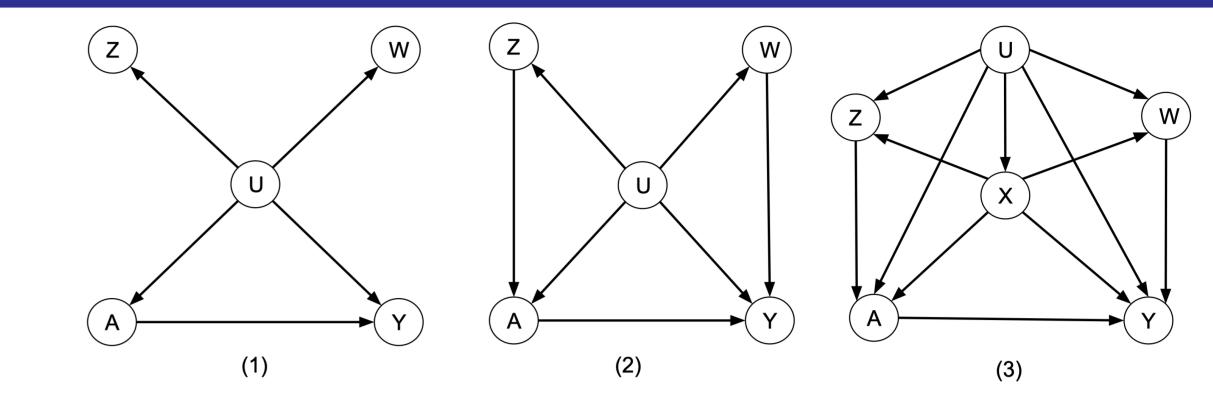


Figure 1: Three Common DAGs which PCI Applies to.

Previous Work of Proximal Causal Inference (PCI)

- Miao et al. (2018) studied the identification of causal effect with proxy variables. Tchetgen Tchetgen et al. (2023) developed proximal causal inference (PCI) to de-bias confounded causal effect estimates by leveraging a pair of proxy variables.
- However, implementing PCI involves solving complex integral equations that are typically ill-posed. Under linear models for outcome confounding proxy W and primary outcome Y, the proximal g-computation algorithm can be implemented by a two-stage OLS (see e.g. Tchetgen Tchetgen et al, 2023).

Continuous (Y, W) with Identity Links & Count (Y, W) with Log Links

Assumptions 1

$$E[Y|A,Z,U] = \beta_0 + \beta_a A + \beta_u U; E[W|A,Z,U] = \alpha_0 + \alpha_u U$$

Result 1

$$E[Y|A,Z] = \beta_0^* + \beta_a^*A + \beta_u^*E[W|A,Z],$$
where $\beta_0^* = \beta_0 - \beta_u \frac{\alpha_0}{\alpha_u}$, $\beta_a^* = \beta_a$, $\beta_u^* = \frac{\beta_u}{\alpha_u}$, provided that $\alpha_u \neq 0$.

Assumptions 2

$$\log(E[Y|A,Z,U]) = \beta_0 + \beta_a A + \beta_u U; \ \log(E[W|A,Z,U]) = \alpha_0 + \alpha_u U$$

 $U|A,Z \sim E[U|A,Z] + \epsilon; \ E[\epsilon] = 0; \ \epsilon \perp \!\!\!\perp A,Z; \ \text{the marginal distribution of } \epsilon \text{ is unrestricted.}$

Result 2

$$\log(E[Y|A,Z]) = \beta_0^* + \beta_a^*A + \beta_u^*\log(E[W|A,Z]),$$
where $\beta_0^* = \tilde{\beta}_0 - \beta_u \frac{\tilde{\alpha}_0}{\alpha_u}$, $\beta_a^* = \beta_a$, $\beta_u^* = \frac{\beta_u}{\alpha_u}$, provided that $\alpha_u \neq 0$.

Results 1 and 2 suggest a two-stage linear regression and Poisson regression approach.

Binary (Y, W) with Logit Links

Assumptions 3

logit(Pr(
$$Y = 1|A, Z, W, U$$
)) = $\beta_0 + \beta_a A + \beta_u U + \beta_w W$
logit(Pr($W = 1|A, Z, Y, U$)) = $\alpha_0 + \alpha_u U + \alpha_y Y$
 $U|A, Z, Y = 0, W = 0 \sim E[U|A, Z, Y = 0, W = 0] + \epsilon$; $E[\epsilon] = 0$;
 $\epsilon \perp \!\!\!\perp (A, Z)|Y = 0, W = 0$; the distribution of $\epsilon |Y = 0, W = 0$ is unrestricted.

Result 3

$$\operatorname{logit}(\operatorname{Pr}(Y=1|A,Z,W)) = \beta_0^* + \beta_a^*A + \beta_u^* \operatorname{logit}(\operatorname{Pr}(W=1|A,Z,Y=1)) + \tilde{\beta}_w W,$$
where $\beta_0^* = \tilde{\beta}_0 - \beta_u \frac{(\tilde{\alpha}_0 + \tilde{\alpha}_y)}{\alpha_u}$, $\beta_a^* = \beta_a$, $\beta_u^* = \frac{\beta_u}{\alpha_u}$, provided that $\alpha_u \neq 0$.

Result 3 suggests a two-stage logistic regression approach.

Implement PCI through Two-Stage Generalized Linear Models (GLMs)

We develop a two-stage regression approach to implement PCI

- · (i): Applicable to continuous, count, and binary outcomes cases, when identity, log, logit link functions, or their combinations are applied. Relevant to a wide range of real-world applications.
- (ii): Easy to implement using off-the-shelf software for GLMs.

	Y Data Type W Data Type	Continuous (Identity Link)	Count (Log Link)	Binary (Logit Link)
	Continuous (Identity Link)	Linear $W \sim A + Z$	Linear $W \sim A + Z$	Linear $W \sim A + Z + Y$
		S = E[W A,Z]	S = E[W A,Z]	S = E[W A, Z, Y = 1]
		Linear $Y \sim A + S$	Poisson $Y \sim A + S$	Logistic $Y \sim A + S$
	Count (Log Link)	Poisson $W \sim A + Z$	Poisson $W \sim A + Z$	Poisson $W \sim A + Z + Y$
		$S = \log(E[W A,Z])$	$S = \log(E[W A,Z])$	$S = \log(E[W A, Z, Y = 1])$
		Linear $Y \sim A + S$	Poisson $Y \sim A + S$	Logistic $Y \sim A + S$
	Binary (Logit Link)	Logistic $W \sim A + Z$	Logistic $W \sim A + Z$	Logistic $W \sim A + Z + Y$
		$S = \operatorname{logit}(\Pr(W = 1 A, Z))$	$S = \operatorname{logit}(\Pr(W = 1 A, Z))$	S = logit(Pr(W = 1 A, Z, Y = 1))
		Linear $Y \sim A + S + W$	Poisson $Y \sim A + S + W$	Logistic $Y \sim A + S + W$

Figure 2:S denotes the proximal control variable for U.

Application: Right Heart Catheterization (RHC) Treatment Effect

As error-prone snapshots of the underlying physiological state over time, physiological measurements (ph1, hema1) and (pafi1, paco21) are considered as confounding proxies (W) and (Z), respectively.

(W): ph1, hema1 encoded by 1 if greater than the median; W = 0 if (ph1=0,hema1=0); W = 1 if (ph1=1,hema1=0); W = 2 if (ph1=0,hema1=1); W = 3 if (ph1=1,hema1=1). (Z): pafi1, paco21. (Y): 1 if the patient alive at 30th day. (A): 1 if the RHC is performed.

Two-stage logistic regression estimation:

logit(Pr(
$$W = k | A, Z, X, Y$$
)) = $\alpha_{0k}^* + \alpha_{ak}^* A + \alpha_{zk}^* Z + \alpha_{xk}^* X + \tilde{\alpha}_{yk} Y$, where $k \in \{1, 2, 3\}$, logit(Pr($Y = 1 | A, Z, X, W$)) = $\beta_0^* + \beta_a^* A + \beta_x^* X + \beta_u^* \sum_{k=1}^3 \text{logit}(\text{Pr}(W = k | A, Z, Y = 1))$ + $\sum_{k=1}^3 \tilde{\beta}_{wk} I(W = k)$, where $\beta_a^* = \beta_a$. Estimates: $\hat{\beta}_a(Proximal) = -0.40 \; (-0.56, -0.26), \; \hat{\beta}_a(MLE) = -0.36 \; (-0.51, -0.21)$.

Reference

- W. Miao, Z. Geng, and E. J. Tchetgen Tchetgen, "Identifying causal effects with proxy variables of an unmeasured confounder," Biometrika, vol. 105, no. 4, pp. 987–993, 2018.
- E. J. Tchetgen Tchetgen, A. Ying, Y. Cui, X. Shi, and W. Miao, "An introduction to proximal causal learning," Statistical Science (2023).

