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Neddylation inhibition reduces liver steatosis in MAFLD mice models by promoting hepatic fatty acid oxidation via DEPTOR-mTOR axis
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1 INTRODUCTION

Neddylation is a druggable and reversible ubiquitin-like post-

translational modification upregulated in many diseases including

metabolic-associated fatty liver disease (MAFLD), liver fibrosis and

hepatocellular carcinoma (HCC).

MAFLD is a complex liver disease and comprehends a group of

conditions being the massive accumulation of fat in the liver the

main feature. Related to lipid imbalances occurring during MAFLD,

mechanistic target of rapamycin (mTOR) pathway plays an essential

role in lipid metabolism and pointed out as a possible trigger of the

disease. In recent years, the regulation of DEP domain-containing

mTOR-interacting protein (DEPTOR), a negative regulator of mTOR

pathway, has been involved in the alteration of lipid homeostasis. It

is known that DEPTOR is degraded by SCF (Skp1-Cullin-F box

proteins) E3 ubiquitin ligase, which needs to be neddylated to be

active. Therefore, we decided to evaluate the potential use of

Pevonedistat (MLN4924), a neddylation inhibitor, in MAFLD

therapy through regulation of mTOR signaling.
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AIM2

The present work aims to address the effects of Neddylation

inhibition and the underlying mechanism in preclinical models of

MAFLD.

RESULTS4

Herein, we have further addressed the relevance of hepatic neddylation in MAFLD as well as the therapeutic

efficacy of neddylation inhibition both in vitro cell models and in mouse models of diet induced MAFLD. We provide

evidence that hepatic neddylation inhibition decreases liver steatosis by boosting fatty acid oxidation in a process

partly mediated by impaired the mammalian target of rapamycin (mTOR) signaling as regulated by DEPTOR (DEP-

domain containing mTOR-interacting protein). Moreover, we have identified for the first time that the levels of

NEDD8 in serum appear to correlate with NAFLD disease progression. Overall, treating NAFLD by targeting

neddylation may be a fast and effective strategy to regulate altered signaling pathways and metabolic reactions.

METHOD3

Neddylation inhibition was evaluated in mouse isolated hepatocytes. Moreover, male adult C57BL/6 mice (3-

month old) fed either with 0.1% methionine and choline deficient diet (0.1%MCD diet) or with a choline-deficient

high fat diet (CD-HFD) were used. After 2 weeks of 0.1%MCD diet or 3 weeks of CD-HFD, mice were treated

during 2 or 3 more weeks, depending on the diet, with Pevonedistat (60mg/Kg) by oral gavage each 4 days. The

effects of neddylation specific inhibition were also evaluated in male adult C57BL/6 AlfpCre mice infected with

AAV-DIO-shNEED8 and maintained on CD-HFD for 6 weeks. Finally, the impact of hepatic neddylation in patients

with MAFLD as well as the potential use of NEDD8 serum levels for MAFLD diagnostic purposes were evaluated.
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4.1  Hepatic neddylation is augmented in clinical and pre-clinical MAFLD

Hepatic global neddylation levels were increased in liver biopsies from a cohort of well-characterized MAFLD patients, both lean

and obese, in comparison to age-matched healthy controls analyzed by immunohistochemistry (IHC) (Fig. A). In-depth analysis

revealed that hepatic global neddylation levels correlate positively with the NAS score (Fig. B). Then, we evaluated the levels of

hepatic neddylation in mouse models of diet-induced MAFLD reflecting different stages of the pathology. In all these animal

models of MAFLD, hepatic global neddylation was induced (Fig. C-E), with higher increases corresponding to more aggressive

dietary interventions.

4.2  Neddylation inhibition reduces lipid accumulation in NAFLD preclinical models.

Neddylation inhibition by MLN4924 (Pevonedistat) or Nedd8 silencing (siRNA) reduced lipid accumulation in oleic acid-stimulated

mouse primary hepatocytes (Fig. F-G) without induce cell apoptosis. In addition, the effects of neddylation inhibition was evaluate

in 2 mouse models of MAFLD. MLN4924 treatment significantly decreased hepatic steatosis, quantified both by Sudan red staining

and biochemically measuring hepatic triglycerides (Fig. H-I). To further confirm that does not exist off-target effects associated

with MLN4924 and other organs networks, Nedd8 was specifically silenced in the hepatocytes of CDHFD animals by using Alfp-

Cre/AAV-DIO-shNedd8 (Fig. J), and the lipid contest results were similar to those treated with MLN4924.

4.3  mTOR inhibition via DEPTOR accumulation plays a role in neddylation inhibition 

mediated anti-steatotic effects in NAFLD pre-clinical models.

To better understand MAFLD at the proteome level we performed high-throughput proteomics Liquid

Chromatography-Mass Spectrometry (LC-MS)-based analyses in animals models of the disease. Ingenuity

pathway analysis (IPA) identified the major canonical pathways involved in NAFLD suggesting that eukaryotic

initiation factor 2 (EiF2) signaling and mTOR pathway, which plays an important role in the regulation of lipid

metabolism, are highly altered in MAFLD (Fig. K).

4.4  Neddylation inhibition boosts fatty acid oxidation coupled with oxidative 

phosphorylation in NAFLD pre-clinical models.

mTOR signaling plays an important role on regulating lipid metabolism, such as lipogenesis and

oxidative fluxes in the liver. MLN4924 treatment to isolated mouse hepatocytes stimulated with OA

induces FAO activity (Fig. O). In agreement, neddylation inhibition by MLN4924 significantly induced

oxidative phosphorylation (OXPHOS), an electron transport-linked phosphorylation, as well as ATP-

linked respiration in mouse hepatocytes, measured by Seahorse-based analysis (Fig. P). Likewise, FAO

activity was also shown to be induced in MLN4924-treated CDHFD and 0.1% MCDD-fed rodents (Fig. Q).

4.5  Neddylation inhibition reduces oxidative stress, lipid peroxidation and 

inflammation in NAFLD pre-clinical models.

Pharmacological neddylation inhibition ameliorates liver steatosis preventing lipid peroxidation, hepatic

oxidative stress and inflammation in mouse models of diet induced MAFLD (Fig. R-U).
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4.6  Serum NEDD8 levels correlate with MAFLD severity 

NEDD8 serum levels correlate with disease progression, in patients and preclinical models, highlighting

the power of serum NEDD8 as a potential non-invasive biomarker for MAFLD, should be further

investigated (Fig. V-W).

Herein, we show that neddylation inhibition in vivo, induced protein DEPTOR with a concomitant mTOR

inhibition, the phosphorylation of S6 protein (pS6), a downstream target of mTOR, was reduced (Fig. L),

without changes in Deptor gene expression. Likewise, neddylation inhibition using MLN4924

pharmacological treatment in OA-stimulated hepatocytes increased DEPTOR content (Fig. M). Under these

conditions, when silencing Deptor by using siRNA-based molecular approaches in primary mouse

hepatocytes, MLN4924 treatment was not able to significantly reduce the cellular lipid content (Fig. N).

Thus, mTOR inhibition via DEPTOR accumulation plays a role in the neddylation inhibition mediated anti-

steatotic effects.
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