IMbrave050: Phase 3 study of adjuvant atezolizumab + bevacizumab versus active surveillance in patients with hepatocellular carcinoma at high risk of disease recurrence following resection or ablation

Pierce Chow,¹ Minshan Chen,² Ann-Lii Cheng,³ Ahmed Kaseb,⁴ Masatoshi Kudo,⁵ Han Chu Lee,⁶ Shukui Qin⁷, Jian Zhou,⁸ Lu Wang,⁹ Xiaoyu Wen,¹⁰ Jeong Heo,¹¹ Won Young Tak,¹² Shinichiro Nakamura,¹³ Kazushi Numata,¹⁴ Thomas Uguen,¹⁵ David Hsiehchen,¹⁶ Edward Cha,¹⁷ Stephen P. Hack,¹⁷ Qinshu Lian,¹⁷ Jessica Spahn,¹⁷ Chun Wu,¹⁸ Adam Yopp,¹⁶

¹National Cancer Centre Singapore, Singapore and Duke-NUS Medical School Singapore, Singapore; ²Sun Yat-sen University Cancer Center, Guangdong Province, China; ³National Taiwan University Cancer Center and National Taiwan University Hospital, Taipei, Taiwan; ⁴MD Anderson Cancer Center, Houston, TX; ⁵Kindai University, Osaka, Japan; ⁶Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ⁷Jinling Hospital of Nanjing University of Chinese Medicine, Nanjing, China; ⁸Zhongshan Hospital, Fudan University, Shanghai, China; ⁹Fudan University Shanghai Cancer Center, Shanghai, China; ¹⁰1st Hospital of Jilin University, Jilin, China; ¹¹College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; ¹²Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; ¹³Himeji Red Cross Hospital, Hyogo, Japan; ¹⁴Yokohama City University Medical Center, Yokohama, Japan; ¹⁵Hopital de Pontchaillou, Rennes, France; ¹⁶UT Southwestern Medical Center, Dallas, TX; ¹⁷Genentech Inc, South San Francisco, CA; ¹⁸Roche (China) Holding Ltd, Shanghai, China

BACKGROUND

- · Currently, no standard of care exists in the adjuvant setting for hepatocellular carcinoma (HCC) following resection or ablation with curative intent
- The risk of postoperative recurrence is high, with a reported 63% recurrence rate at 5 years. This rate is even higher in patients with high-risk features (e.g., large tumor size, multiple tumors, poor tumor differentiation, or vascular invasion)^{1,2}
- Recurrence occurs in a bimodal pattern, with most events appearing within 2 years of resection or ablation followed by a second wave at 4-5 years^{1,3}
- VEGF/PD-L1 blockade augments anti-cancer immune mechanisms relevant to postoperative HCC recurrence⁴
- The Phase 3 IMbrave150 study demonstrated statistically significant and clinically meaningful improvement in progression-free survival, overall survival and objective response rate with atezolizumab (atezo) + bevacizumab (bev) compared with sorafenib in the first-line unresectable HCC setting, establishing atezo + bev as a standard of care^{5,6}
- Here we report the results of IMbrave050, a global, open-label, Phase 3, randomized study of atezo + bev vs active surveillance in patients at high risk of disease recurrence following resection or ablation with curative intent

METHODS

Figure 1. IMbrave050 Study Design

ClinicalTrials.gov, NCT04102098. ECOG PS; Eastern Cooperative Oncology Group performance status; Q3W, every three weeks; R, randomization; TACE, transarterial chemoembolization. ^a Intrahepatic recurrence defined by EASL criteria. Extrahepatic recurrence defined by RECIST 1.1.

Figure 2. High-risk criteria by curative treatment

Curative

treatment	Criteria for high risk of HCC recurrence							
	 				_		_	

- ≤3 tumors, with largest tumor >5 cm regardless of vascular invasion, a or poor tumor differentiation
- ≥4 tumors, with largest tumor ≤5 cm regardless of vascular invasion, a or poor tumor differentiation
- ≤3 tumors, with largest tumor ≤5 cm with vascular invasion,^a and/or poor tumor differentiation (Grade) 3 or 4)
- 1 tumor >2 cm but ≤5 cm

Ablation^b Multiple tumors (≤4 tumors), all ≤5 cm

^a Microvascular invasion or minor macrovascular portal vein invasion of the portal vein—Vp1/Vp2. ^b Ablation must be radiofrequency ablation or microwave ablation.

Figure 3. Study endpoints and testing hierarchy

^a Per protocol.

Resection

RESULTS

Table 1. Baseline characteristics were balanced across treatment arms

Characteristic	Atezo + bev (n=334)	Active surveillance (n=334)
Median age (range), years	60 (19-89)	59 (23-85)
Male sex, n (%)	277 (82.9)	278 (83.2)
Ethnicity, n (%)		
Asian	276 (82.6)	269 (80.5)
White	35 (10.5)	41 (12.3)
Other	23 (6.9)	24 (7.2)
Geographic region, n (%)		
Asia Pacific excluding Japan rest of world	237 (71.0) 97 (29.0)	238 (71.3) 96 (28.7)
ECOG PS score, n (%)		
0 1	258 (77.2) 76 (22.8)	269 (80.5) 65 (19.5)
PD-L1 status, n (%) ^{a,b}		
≥1% <1%	154 (54.0) 131 (46.0)	140 (50.2) 139 (49.8)
Etiology, n (%)		
Hepatitis B	209 (62.6)	207 (62.0)
Hepatitis C	34 (10.2)	38 (11.4)
Non viral unknown	45 (13.5) 46 (13.8)	38 (11.4) 51 (15.3)
BCLC stage at diagnosis, n (%)		
0	2 (0.6)	3 (0.9)
A	287 (85.9)	277 (82.9)
В	25 (7.5)	32 (9.6)
С	20 (6.0)	22 (6.6)

BCLC; Barcelona Clinic Liver Cancer. ^a n=285 for atezo + bev and 279 for active surveillance. ^b PD-L1 expression is defined as the total percentage of the tumor area covered by tumor and immune cells stained for PD-L1 using the SP263 immunohistochemistry assay (VENTANA).

Table 2. Baseline characteristics—curative procedures

Characteristic	Atezo + bev	Active surveillance (n=334)	
Characteristic	(n=334)		
Resection, n (%)	293 (87.7)	292 (87.4)	
Longest diameter of the largest tumor at diagnosis, median (range), cm ^a	5.3 (1.0-18.0)	5.9 (1.1-25.0)	
Tumors, n (%)			
1	266 (90.8)	260 (89.0)	
2	20 (6.8)	29 (9.9)	
3	4 (1.4)	2 (0.7)	
4+	3 (1.0)	1 (0.3)	
Adjuvant TACE following resection, n (%)	32 (10.9)	34 (11.6)	
Any tumors >5 cm, n (%)	152 (51.9)	175 (59.9)	
Microvascular invasion present, n (%)	178 (60.8)	176 (60.3)	
Minor macrovascular invasion (Vp1/Vp2) present, n (%)	22 (7.5)	17 (5.8)	
Poor tumor differentiation (Grade 3 or 4), n (%)	124 (42.3)	121 (41.4)	
Ablation, n (%)	41 (12.3)	42 (12.6)	
Longest diameter of the largest tumor at diagnosis, median (range), cm	2.5 (1.2-4.6)	2.6 (1.5-4.6)	
Tumors, n (%)			
1	29 (70.7)	31 (73.8)	
2	11 (26.8)	8 (19.0)	
3	1 (2.4)	3 (7.1)	

Clinical cutoff: October 21, 2022; median follow-up duration: 17.4 mo.

- At clinical cutoff, 110 of 334 (33%) in the atezo + bev arm and 133 of 334 (40%) in the active surveillance arm experienced disease recurrence or death
- A 28% reduction in risk of recurrence was observed with atezo + bev

Figure 4. Primary endpoint: IRF-assessed RFS was significantly improved with atezo + bev vs active surveillance

FU, follow-up; NE, not estimable. HR is stratified. P value is a log rank.

Figure 5. IRF-assessed disease recurrence was 33% lower in the atezo + bev group than the active surveillance group

HR is stratified. P value is a log rank.

Patients in the active surveillance arm were allowed to cross over to receive atezo + bev either directly after IRF-confirmed recurrence or following a second resection or ablation Of the 133 patients with an RFS event during active surveillance, 81 (61%) crossed over to atezo + bev

Figure 6. Time on different treatments for patients in the active surveillance arm

Figure 7. IRF-assessed RFS subgroups

Baseline risk factors	No. of patients	Unstratified HR (95% CI)			
All patients	668	0.74 (0.57, 0.95)			
<65 years old	427	0.80 (0.58, 1.08)			
≥65 years old	241	0.64 (0.41, 1.00)			
Male	555	0.74 (0.56, 0.98)			
Female	113	0.73 (0.38, 1.40)			
Asian	545	0.75 (0.56, 0.99)			
White	78	0.59 (0.28, 1.25)			
Other race	45	0.91 (0.36, 2.29)			
ECOG PS 0	527	0.65 (0.48, 0.87)			
ECOG PS 1	141	1.13 (0.67, 1.91)			
PD-L1 ≥1%	294	0.82 (0.55, 1.20)			
PD-L1 <1%	270	0.62 (0.43, 0.91)			
Unknown PD-L1	104	0.82 (0.39, 1.71)			
1 high-risk feature ^a	311	0.74 (0.48, 1.14)			
≥2 high-risk features ^a	274	0.77 (0.55, 1.08)			
BCLC 0/A	569	0.78 (0.59, 1.04)			
BCLC B	57	0.44 (0.18, 1.08)			
BCLC C	42	0.73 (0.31, 1.73)			
Hepatitis B etiology	416	0.87 (0.63, 1.20)			
Hepatitis C etiology	72	0.65 (0.30, 1.40)			
Non-viral etiology	83	0.70 (0.34, 1.42)			
Unknown etiology	97	0.45 (0.23, 0.89)			
Resection	585	0.75 (0.58, 0.98)			
A blation	83 -	0.61 (0.26, 1.41)			
In patients who underwent resection					
1 tumor	526	0.77 (0.58, 1.03)			
>1 tumors	59	0.60 (0.28, 1.27)			
Tumor size >5 cm	327	0.66 (0.48, 0.91)			
Tumor size ≤5 cm	258	1.06 (0.65, 1.74)			
mVI present	354	0.79 (0.56, 1.10)			
mVI absent	231	0.69 (0.45, 1.06)			
Poor tumor differentiation	245	0.76 (0.51, 1.12)			
No poor tumor differentiation	340	0.74 (0.52, 1.07)			
Received TACE	66	1.21 (0.57, 2.59)			
Did not receive TACE	519	0.71 (0.53, 0.94)			
	Atezo + bev better 0	.3			

OS is highly immature, with a 7% event-patient ratio (n=47). There were:

- 7 more deaths in the atezo + bev arm (27 vs 20)
- Similar number of deaths due to HCC recurrence
- 3 COVID-19-related deaths within 1 year of randomization, all in the atezo + bev arm

Figure 8. Overall survival was highly immature

NE, not estimable. HR is stratified.

AE leading to withdrawal from any study treatment

Table 4. Safety summary

Table 4. Calety Sammary			
	Atezo + bev (n=332)	Active ^a surveillance (n=330)	IMbrave150 ^{5,7} (n=329)
Treatment duration, median, mo	Atezo: 11.1 Bev: 11.0	NA	Atezo: 7.4 Bev: 6.9
Patients with ≥1 AE, n (%)	326 (98.2)	205 (62.1)	323 (98.2)
Treatment-related AE	293 (88.3)	NA	276 (83.9)
Grade 3/4 AE , n (%)	136 (41.0)	44 (13.3)	186 (56.5)
Treatment-related Grade 3/4 AE	116 (34.9)	NA	117 (35.6)
Serious AE, n (%)	80 (24.1)	34 (10.3)	125 (38.0)
Treatment-related serious AE	44 (13.3)	NA	56 (17.0)
Grade 5 AE, n (%)	6 (1.8)	1 (0.3) ^c	15 (4.6)
Treatment-related Grade 5 AE	2 (0.6) ^b	NA	6 (1.8)
AE leading to dose interruption of any study treatment, n (%)	155 (46.7)	NA	163 (49.5)

In safety-evaluable patients. AE, adverse event. NA, not available. ^a All safety data for the surveillance arm are from evaluations prior to crossover. ^b Esophageal varices hemorrhage and ischemic stroke; 1 was related to atezo and bev and the other was related to bev only. ^c Esophageal varices hemorrhage.

63 (19.0)

NA

51 (15.5)

Table 5. AE of any grade with an incidence rate of ≥10% in either treatment group by preferred term

Event, n (%)) + bev 332)	Active surveillance ^a (n=330)		
	Any grade	Grade 3 or 4	Any grade	Grade 3 or 4	
Proteinuria	154 (46.4)	29 (8.7)	12 (3.6)	0	
Hypertension	127 (38.3)	61 (18.4)	10 (3.0)	3 (0.9)	
Platelet count decreased	66 (19.9)	15 (4.5)	22 (6.7)	4 (1.2)	
Aspartate aminotransferase increased	52 (15.7)	3 (0.9)	18 (5.5)	2 (0.6)	
Alanine aminotransferase increased	47 (14.2)	2 (0.6)	18 (5.5)	3 (0.9)	
Hypothyroidism	47 (14.2)	0	1 (0.3)	0	
Arthralgia	40 (12.0)	1 (0.3)	8 (2.4)	1 (0.3)	
Pruritus	40 (12.0)	1 (0.3)	3 (0.9)	0	
Rash	40 (12.0)	0	1 (0.3)	0	
Blood bilirubin increased	34 (10.2)	1 (0.3)	23 (7.0)	1 (0.3)	
Pyrexia	34 (10.2)	0	7 (2.1)	0	
In safety-evaluable patients. a All safety data	for the surveillance an	m are from evaluations	s prior to crossover.		

CONCLUSIONS

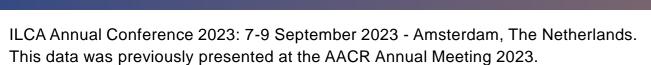
- IMbrave050 is the first Phase 3 study of adjuvant treatment for HCC to demonstrate RFS improvement following curative intent resection or ablation
- At the prespecified interim analysis, adjuvant atezolizumab + bevacizumab met its primary endpoint and showed a statistically significant and clinically meaningful improvement in IRF-assessed RFS vs active surveillance in patients with a high risk of HCC recurrence (HR, 0.72; 95% CI: 0.56, 0.93; P=0.012)
- Similar improvement in INV-assessed RFS was also observed
- RFS benefit with atezolizumab + bevacizumab was generally consistent across key clinical subgroups
- At the time of this prespecified interim analysis, OS was highly immature compared with assumptions made in the protocol; longer follow-up for OS is needed

The safety profile of adjuvant atezolizumab + bevacizumab was generally consistent with that of each agent and

Atezolizumab + bevacizumab may be a practice-changing adjuvant treatment option for patients with high-risk HCC that may change the clinical indications for surgical resection

References

with the underlying disease


- 1. Chan et al. J Hepatol 2018. 2. Lim et al. Br J Surg 2012. 3. Imamura et al. J Hepatol 2003.
- 4. Hack et al. Future Oncol 2020. 5. Finn et al. NEJM 2020. 6. Cheng et al. J Hepatol 2022.
- 7. Roche, data on file.

ACKNOWLEDGMENTS

- The patients and their families
- The investigators and clinical study sites This study was sponsored by F. Hoffmann-La Roche Ltd
- This oral presentation was developed by the authors with medical writing assistance provided by Bena Lim, PhD, of Nucleus Global and funded by F. Hoffmann-La Roche Ltd

Disclosures

PC is an employee of SingHealth, Duke-NUS Medical School; is a consultant for AUM Biosciences, BeiGene, Omega Therapeutics, Roche, and Sirtex; serves on speaker's bureau for AstraZeneca, Bayer, Omega Therapeutics, Roche, and Worrell; receives grant/research support from Roche and Sirtex; holds stock in AVATAMED; receives honoraria from AstraZeneca, Bayer, Perspectum, Roche, Sirtex, and Worrell.

^a Patients who underwent ablation were categorized as "not applicable."

mVI, microvascular invasion.

