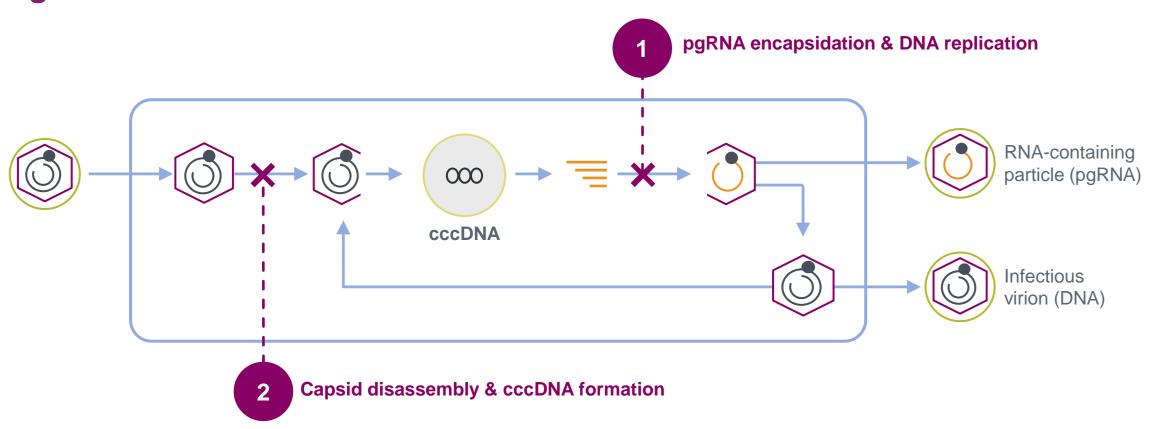
Xieer Liang¹, Jinlin Hou¹, Yujuan Guan², Zhanqing Zhang³, Qing Xie⁴, Jidong Jia⁵, Jifang Sheng⁶, Qin Ning⁷, Wang Yang⁸, Afsaneh Mozaffarian⁹, Nuruddin Unchwaniwala¹⁰, Jieming Liu¹⁰, Katie Zomorodi¹⁰, Luisa M. Stamm¹⁰, Steven J. Knox¹⁰, Michele Anderson¹⁰, Kathryn M. Kitrinos¹⁰, <u>Grace Wang¹⁰</u>, Yu Chen¹¹, Junqi Niu⁸

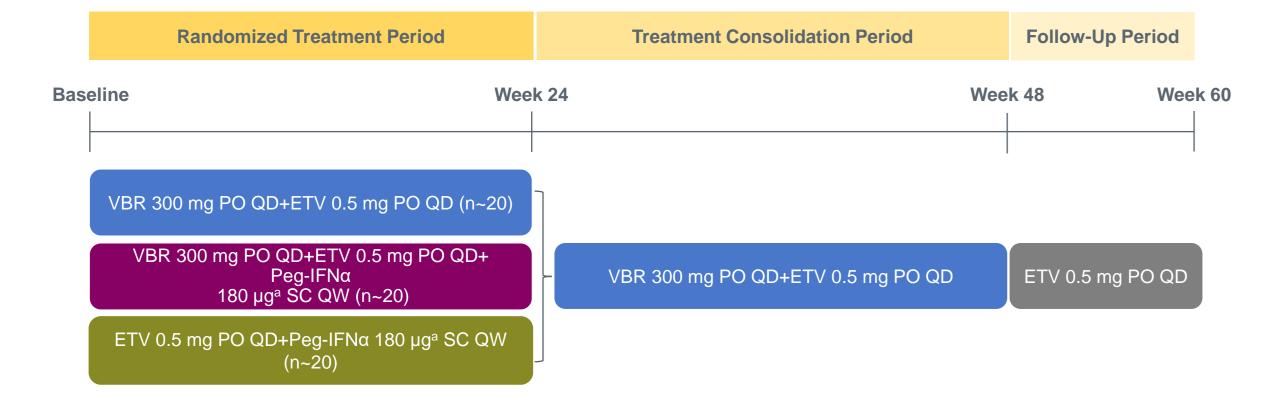

Vebicorvir, entecavir, and pegylated interferon in patients with hepatitis B e antigen positive chronic hepatitis B virus infection:

¹Hepatology Unit and Department of Infectious Diseases, Nanghai, China; ¹Ruijin Hospital, China; ²Ruijin Hospital, China; of Medicine, Hangzhou, Zhejiang, China; Tongji Hospital of Tongji Hospital of Tongji Hospital of Jilin University, Jilin, China; Tongji Medical University, Jilin, China; South San Francisco, CA, USA; Osciences, Inc., South San Francisco, CA, USA; Osciences during the study; current affiliation Gilead Sciences, Foster City, CA, USA; Osciences, Inc., South San Francisco, CA, USA; Osciences, Inc., Sou

Background

- Chronic hepatitis B virus infection (cHBV) is a significant global health problem affecting an estimated 296 million people worldwide and resulting in approximately 820,000 deaths yearly, largely due to cirrhosis and hepatocellular carcinoma¹⁻⁴
- Nucleos(t)ide reverse transcriptase inhibitors (Nrtls) are generally well tolerated, and on-treatment virologic suppression is achieved in the majority of patients. However, nearly all patients relapse after stopping Nrtls, resulting in the need for lifelong treatment⁵⁻⁷
- Novel combination approaches may provide durable virologic outcomes following finite treatment durations and reduce the number of patients requiring lifelong therapy
- Core inhibitors are a novel class of antivirals that interfere with multiple steps of the HBV lifecycle These agents work through inhibition of pregenomic (pg)RNA encapsidation, preventing
- assembly and release of infectious viral particles, and disruption of incoming capsids, preventing covalently closed circular (ccc)DNA formation (Figure 1)⁸
- In Phase 1 studies, core inhibitors demonstrated potent antiviral effects,⁹⁻¹¹ and in Phase 2 studies, they demonstrated additive antiviral activity when combined with Nrtls vs Nrtls alone^{12,13}
- Vebicorvir (VBR) is a first-generation core inhibitor that, in combination with entecavir (ETV), has demonstrated deeper viral suppression compared with ETV alone in untreated patients with hepatitis B e antigen (HBeAg) positive cHBV^{13,14}
- The addition of pegylated interferon alfa (Peg-IFNα) may further increase the efficacy of VBR+ETV through complementary mechanisms of action

Figure 1. HBV Core Inhibitor Mechanisms of Action


cccDNA, covalently closed circular DNA; HBV, hepatitis B virus; pgRNA, pregenomic RNA.

Objective

• The objective of this analysis is to report the safety and efficacy of VBR when administered in combination with ETV with or without Peg-IFNα in patients with cHBV (NCT04781647)

Methods

Figure 2. Study Design

Key inclusion criteria

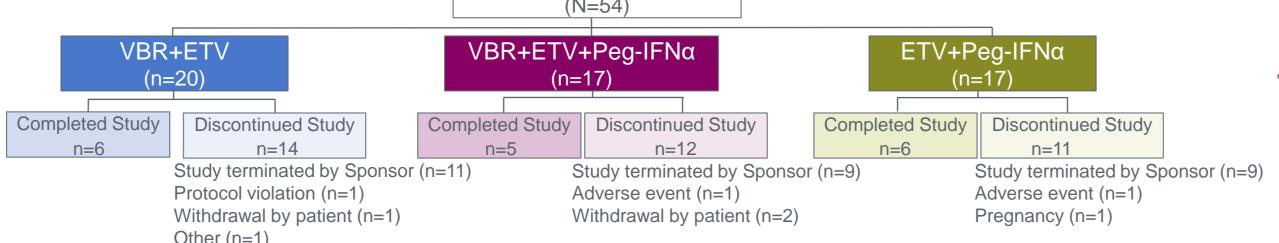
- Male or female, aged 18-65 years (inclusive)
- HBeAg positive with HBV DNA ≥2×10⁴ IU/mL No cirrhosis (F0-F3 fibrosis) or advanced liver
- Key exclusion criteria Coinfection with HAV, HCV, HDV, HEV, or HIV
- HBV infection with >1 genotype
- Current or prior treatment for cHBV^c ALT ≤2× ULN or ≥10× ULN
- ^aReduction to 90 μg or 135 μg permitted due to adverse reactions; ^bDefined as HBV infection documented for ≥6 months from Screening; ^cIncluding a nucleos(t)ide reverse transcriptase inhibitor for >4 weeks; interferon-based therapy or liver-protecting and ALT-lowering treatment including traditional

Chinese medicine ≤6 months of screening; lamivudine, telbivudine or adefovir (of any duration); or previous treatment with an investigational agent for ALT, alanine aminotransferase; cHBV, chronic HBV infection; ETV, entecavir; HAV, hepatitis A virus; HBeAg, hepatitis B e antigen; HBV, hepatitis B virus; HCV, hepatitis C virus; HDV, hepatitis D virus; HEV, hepatitis E virus; HIV, human immunodeficiency virus; Peg-IFNα, pegylated interferon alfa; PO, oral; SC, subcutaneous; QD, once daily; QW, once weekly; ULN, upper limit of normal; VBR, vebicorvir.

- Phase 2, multicenter, randomized, open-label study conducted in China (NCT04781647)
- Approximately 60 patients were to be randomized 1:1:1 to treatment with VBR+ETV, VBR+ETV+Peg-IFNα, or Peg-IFNα+ETV for 24 weeks, after which all patients were to receive VBR+ETV for 24 weeks and then ETV alone during a 12-week follow-up period (Figure 2)
- Treatment assignments were stratified by HBV genotype (A or B vs C or D vs other genotypes) and baseline alanine aminotransferase (ALT; <5× upper limit of normal [ULN] vs ≥5× ULN) For efficacy assessments:
- HBV DNA was measured by COBAS TaqMan (limit of detection [LOD]=10 IU/mL) and pgRNA by Assembly Biosciences quantitative polymerase chain reaction assay (LOD=33.1 U/mL) Quantitative hepatitis B surface antigen (HBsAg) was measured by Abbott Architect and Roche
- Elecsys (lower limit of quantification [LLOQ]=0.05 IU/mL) Quantitative hepatitis B core-related antigen (HBcrAg) was measured by Lumipulse G
- (LLOQ=1.0 kU/mL) Quantitative HBeAg measured by Abbott Architect and Roche Elecsys (LLOQ=0.11 IU/mL)
- Safety was assessed by adverse events (AEs) and laboratory parameters

Results

Findings from a Phase 2, randomized open-label study in China


Table 1. Demographics and Baseline Characteristics

Characteristics	VBR+ETV	VBR+ETV+Peg-IFNα	ETV+Peg-IFNα	Total
	(n=20)	(n=17)	(n=17)	(N=54)
Age, years	33 (6.6)	31 (5.8)	34 (7.8)	32 (6.7)
Sex, male, n (%)	15 (75.0)	14 (82.4)	10 (58.8)	39 (72.2)
BMI, kg/m ²	22.5 (2.7)	22.9 (2.4)	23.4 (3.5)	22.9 (2.8)
Time HBV positive, years	11.3 (9.2)	11.2 (9.4)	11.2 (8.9)	11.3 (9.0)
HBV genotype, n (%)				
В	9 (45.0)	8 (47.1)	8 (47.1)	25 (46.3)
С	11 (55.0)	9 (52.9)	9 (52.9)	29 (53.7)
HBV DNA, log ₁₀ IU/mL	8.2 (1.02)	7.7 (1.11)	8.1 (0.63)	8.0 (0.96)
HBV pgRNA, log ₁₀ U/mL	6.5 (1.33)	5.8 (1.43)	6.5 (1.05)	6.3 (1.30)
HBsAg, log ₁₀ IU/mL	4.5 (0.39)	4.1 (0.76)	4.3 (0.53)	4.3 (0.58)
HBcrAg, log ₁₀ kU/mL	5.5 (0.59)	5.0 (0.71)	5.4 (0.46)	5.3 (0.62)
HBeAg, log ₁₀ IU/mL	2.7 (0.81)	2.4 (0.89)	2.7 (0.64)	2.6 (0.79)
ALT, U/L	149 (65.0)	138 (121.2)	123 (58.5)	137 (84.3)

ALT, alanine aminotransferase; BMI, body mass index; ETV, entecavir; HBcrAg, hepatitis B core-related antigen; HBeAg, hepatitis B e antigen; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; Peg-IFNα, pegylated interferon alfa; pgRNA, pregenomic RNA; SD, standard deviation; VBR,

Patients Randomized

Figure 3. Patient Disposition

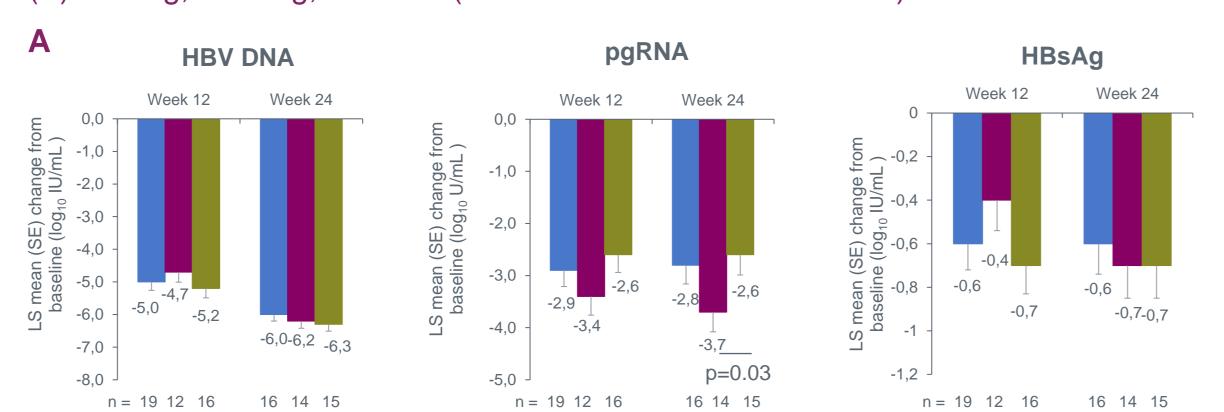
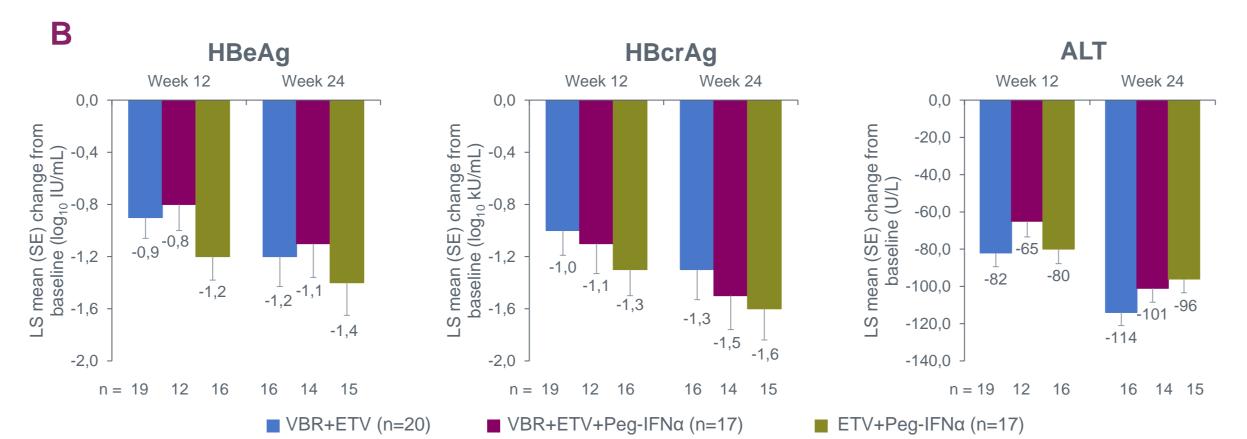
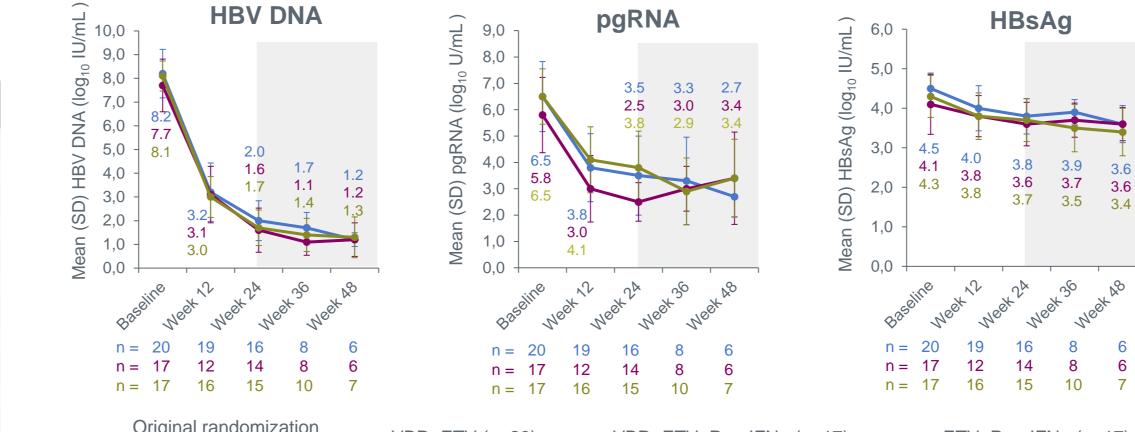

Based on assessment of Week 24 data, the study was terminated early by the Sponsor. ETV, entecavir; Peg-IFNα, pegylated interferon alfa; VBR, vebicorvir

Table 2. On-Treatment Study Drug Compliance


	VBR+ETV (n=20)		VBR+ETV+Peg-IFNα (n=17)		ETV+Peg-IFNα (n=17)			
	VBR	ETV	VBR	Peg-IFNα	ETV	Peg-IFNα	ETV	VBRa
≤80%	0	0	0	2 (11.8)	0	1 (5.9)	1 (5.9)	1 (5.9)
80% to ≤90%	0	0	1 (5.9)	2 (11.8)	0	2 (11.8)	0	0
>90%	20 (100.0)	20 (100.0)	16 (94.1)	13 (76.5)	17 (100.0)	14 (82.4)	16 (94.1)	15 (88.2)

aVBR compliance data were not available for one patient. ETV, entecavir; Peg-IFNα, pegylated interferon alfa; VBR, vebicorvir.

- A total of 54 Asian patients were randomized; demographics and baseline characteristics were similar across treatment arms (Table 1 and Figure 3)
- Overall, 25/54 (46%) and 29/54 (54%) patients were infected with HBV genotype B and C,
- Baseline HBV DNA, pgRNA, HBsAg, HBcrAg, HBeAg, and ALT levels were similar across groups and consistent with the target population
- Overall, most patients had >80% compliance to study drug across cohorts (**Table 2**) Figure 4. Change From Baseline in (A) HBV DNA, pgRNA, and HBsAg and (B) HBeAg, HBcrAg, and ALT (Randomized Treatment Period)


Week 24: HBV DNA LS mean (SE) difference: VBR+ETV+Peg-IFNα vs VBR+ETV= -0.2 (0.26), p=0.5018. VBR+ETV+Peg-IFNα vs ETV+Peg-IFNα=0.2 (0.27), p=0.5065. pgRNA LS mean (SE) difference: VBR+ETV+Peg-IFNα vs VBR+ETV= -0.9 (0.46), p=0.0535. VBR+ETV+Peg-IFNα vs ETV+Peg-IFNα= -1.1 (0.48), p=0.0300. HBsAg LS mean (SE) difference: VBR+ETV+Peg-IFNα vs VBR+ETV= -0.1 (0.19), p=0.6336. VBR+ETV+Peg-IFNα vs ETV+Peg-IFN α =0.1 (0.19), p=0.7871.

Week 24: HBeAg LS mean (SE) difference: VBR+ETV+Peg-IFNα vs VBR+ETV=0.0 (0.31), p=0.9430. VBR+ETV+Peg-IFNα vs ETV+Peg-IFNα=0.3 (0.31), p=0.3620. HBcrAg LS mean (SE) difference: VBR+ETV+Peg-IFNα vs VBR+ETV= -0.2 (0.31), p=0.5300. VBR+ETV+Peg-IFNα vs ETV+Peg-IFNα vs ETV+Peg-IFNα vs VBR+ETV= -0.2 (0.31), p=0.5300. IFNα=0.1 (0.31), p=0.8694. ALT LS mean (SE) difference: VBR+ETV+Peg-IFNα vs VBR+ETV=12 (9.1), p=0.1852. VBR+ETV+Peg-IFNα vs ETV+Peg-IFNα vs ETV+Peg-IFNα vs VBR+ETV=12 (9.1), p=0.1852. VBR+ETV+Peg-IFNα vs ETV+Peg-IFNα vs ETV+Peg-IFNα vs VBR+ETV=12 (9.1), p=0.1852. VBR+ETV+Peg-IFNα vs VBR+ETV+Peg-IFNα vs VBR+ETV=12 (9.1), p=0.1852. VBR+ETV+Peg-IFNα vs VBR+ETV+Peg-IFNα IFN α = -6 (9.1), p=0.5414.

LS means were calculated using an analysis of covariance model with baseline values, stratification factors, and treatment group as covariates. ALT, alanine aminotransferase; ETV, entecavir; HBV, hepatitis B virus; HBcrAg, hepatitis B core-related antigen; HBeAg, hepatitis B e antigen; HBsAg, hepatis B surface antigen; LS, least squares; Peg-IFNα, pegylated interferon alfa; pgRNA, pregenomic RNA; SE, standard error; VBR, vebicorvir.

Figure 5. HBV DNA, pgRNA, and HBsAg Levels Over Time

ETV, entecavir; HBV, hepatitis B virus; HBsAg, hepatitis B surface antigen; Peg-IFNα, pegylated interferon alfa; pgRNA, pregenomic RNA; SD, standard deviation; VBR, vebicorvir.

- At Week 12, there were no significant differences between the VBR+ETV+Peg-IFNα treatment arm and the VBR+ETV or ETV+Peg-IFNα treatment arms in change from baseline for any efficacy measures (Figure 4)
- There were no significant differences between the VBR+ETV+Peg-IFNα treatment arm and the VBR+ETV or ETV+Peg-IFNα treatment arms in change from baseline to Week 24 for HBV DNA, HBsAg, hepatitis B core-related antigen (HBcrAg), or HBeAg (Figure 4)
- Importantly, the VBR+ETV arm performed similarly to the two Peg-IFNα–containing arms with 6.0 log₁₀ IU/mL and 0.6 log₁₀ IU/mL reductions in HBV DNA and HBsAg from baseline, respectively Treatment with VBR+ETV+Peg-IFNα resulted in a significantly greater reduction from baseline
- to Week 24 in pgRNA than with ETV+Peg-IFNα (p=0.03; **Figure 4A**) No patients achieved HBsAg seroconversion or had evidence of functional cure over 24 weeks
- of randomized treatment With no significant differences favoring the VBR+ETV+Peg-IFNα triple regimen over the 2
- double regimens at Week 24, the study was prematurely terminated by the study Sponsor
- Reductions in HBV DNA, pgRNA, and HBsAg were maintained into the Treatment Consolidation Period (Weeks 24-48) (Figure 5)

Table 3. Summary of Safety (Randomized Treatment Period)

	VBR+ETV (n=20)	VBR+ETV+Peg-IFNα (n=17)	ETV+Peg-IFNα (n=17)
TEAE	13 (65.0)	17 (100.0)	17 (100.0)
Grade 1	6 (30.0)	4 (23.5)	3 (17.6)
Grade 2	4 (20.0)	9 (52.9)	12 (70.6)
Grade 3	3 (15.0)	3 (17.6)	2 (11.8)
Grade 4	0	1 (5.9)	0
TEAE related to VBR	7 (35.0)	12 (70.6)	NA
TEAE related to ETV	5 (25.0)	3 (17.6)	2 (11.8)
TEAE related to Peg-IFNα	NA	17 (100.0)	17 (100.0)
TE SAE	0	1 (5.9) ^a	0
TE SAE related to VBR	0	1 (5.9) ^a	NA
TE SAE related to ETV	0	0	0
TE SAE related to Peg-IFNα	NA	1 (5.9) ^a	0
TEAE leading to VBR discontinuation	0	1 (5.9) ^a	NA
TEAE leading to ETV discontinuation	0	0	0
TEAE leading to Peg-IFNα discontinuation	NA	1 (5.9) ^a	0
TEAE leading to study discontinuation	0	1 (5.9) ^a	0
TE graded laboratory abnormality	17 (85.0)	16 (94.1)	16 (94.1)
Grade 1	1 (5.0)	5 (29.4)	5 (29.4)
Grade 2	9 (45.0)	8 (47.1)	10 (58.8)
Grade 3	7 (35.0)	2 (11.8)	1 (5.9)
Grade 4	0	1 (5.9)	0
Death	0	0	0
Data shown are n (%).			

^aGrade 4 alanine aminotransferase increased

ETV, entecavir; Peg-IFNα, pegylated interferon alfa; NA, not applicable; SAE, serious adverse event; TE, treatment emergent; TEAE, treatment-emergent

Table 4. TEAEs Occurring in >1 Patient in Any Single Treatment Group (Randomized Treatment Period)

	(n=20)	VBR+ETV+Peg-IFNα (n=17)	ΕΙV+Peg-IFNα (n=17)
Any TEAE	13 (65.0)	17 (100.0)	17 (100.0)
Platelet count decreased	1 (5.0)	9 (52.9)	9 (52.9)
Pyrexia	0	11 (64.7)	8 (47.1)
Hyperlipidemia	3 (15.0)	6 (35.3)	4 (23.5)
White blood cell count decreased	0	8 (47.1)	9 (52.9)
Neutrophil count decreased	1 (5.0)	6 (35.3)	8 (47.1)
Rash	1 (5.0)	6 (35.3)	3 (17.6)
AST increased	0	4 (23.5)	7 (41.2)
Weight decreased	1 (5.0)	5 (29.4)	4 (23.5)
ALT increased	1 (5.0)	4 (23.5)	5 (29.4)
Dizziness	0	5 (29.4)	4 (23.5)
URTI	1 (5.0)	0	2 (11.8)
Fatigue	0	1 (5.9)	5 (29.4)
Headache	0	4 (23.5)	2 (11.8)
Injection site erythema	0	5 (29.4)	1 (5.9)
Lymphocyte count decreased	0	2 (11.8)	4 (23.5)
Blood calcium decreased	2 (10.0)	2 (11.8)	1 (5.9)
Myalgia	0	1 (5.9)	4 (23.5)
Alopecia	0	0	3 (17.6)
Hyperuricemia	0	1 (5.9)	2 (11.8)
Abdominal pain	0	2 (11.8)	1 (5.9)
Vomiting	0	2 (11.8)	0
Data shown are n (%).			

ALT, alanine aminotransferase; AST, aspartate aminotransferase; ETV, entecavir; Peg-IFNα, pegylated interferon alfa; TEAE, treatment-emergent adverse event; URTI, upper respiratory tract infection; VBR, vebicorvir.

Table 5. Summary of Treatment-Emergent Graded ALT Increases (Randomized Treatment Period)

	VBR+ETV (n=20)	VBR+ETV+Peg-IFNα (n=17)	ETV+Peg-IFNα (n=17)
Any Grade ≥1	6 (30.0)	6 (35.3)	5 (29.4)
Grade 1	0	2 (11.8)	0
Grade 2	2 (10.0)	1 (5.9)	4 (23.5)
Grade 3	4 (20.0)	2 (11.8)	1 (5.9)
Grade 4	0	1 (5.9)	0

ALT, alanine aminotransferase; ETV, entecavir; Peg-IFNα, pegylated interferon alfa; VBR, vebicorvir

Table 6. Summary of Safety (Overall Treatment Period)

,	7 (,	
	VBR+ETV (n=20)	VBR+ETV+Peg-IFNα (n=17)	ETV+Peg-IFNα (n=17)
TEAE	14 (70.0)	17 (100.0)	17 (100.0)
Grade 1	7 (35.0)	2 (11.8)	3 (17.6)
Grade 2	4 (20.0)	10 (58.8)	12 (70.6)
Grade 3	3 (15.0)	4 (23.5)	2 (11.8)
Grade 4	0	1 (5.9)	0
TEAE related to VBR	7 (35.0)	12 (70.6)	5 (29.4)
TEAE related to ETV	5 (25.0)	3 (17.6)	2 (11.8)
TEAE related to Peg-IFNα	NA	17 (100.0)	17 (100.0)
TE SAE	0	1 (5.9) ^a	0
TE SAE related to VBR	0	1 (5.9) ^a	0
TE SAE related to ETV	0	0	0
TE SAE related to Peg-IFNα	NA	1 (5.9) ^a	0
Data shown are n (%). Reported data in		, ,	

ETV, entecavir; Peg-IFNα, pegylated interferon alfa; NA, not applicable; SAE, serious adverse event; TE, treatment emergent; TEAE, treatment-emergent

adverse event; VBR, vebicorvir

- The safety profile through Week 24 was consistent with previous reports for VBR and Peg-IFNα
- The proportion of patients reporting treatment-emergent AEs (TEAEs) was higher in the Peg-IFNα containing arms (Tables 3 and 4)
- Most TEAEs were mild to moderate in severity (Table 3)
- A single serious AE of Grade 4 ALT elevation was reported in a patient in the VBR+ETV+Peg-IFNα
- group that led to study discontinuation (**Table 3**)
- No patients had direct bilirubin >2× ULN
- Among patients with confirmed ALT elevation (**Table 5**), none had direct bilirubin increase ≥2× baseline and ≥2× ULN or international normalized ratio >2× baseline; 2 patients (1 in the VBR+ETV+Peg-IFNα group and 1 in the ETV+Peg-IFNα group) had albumin decline ≥0.5 g/dL from baseline but still within normal limits
- TEAEs remained generally mild in severity for the overall treatment period (Randomized Treatment) and Treatment Consolidation Periods) (Table 6)
- No deaths were reported during treatment

Conclusions

- Overall, the addition of Peg-IFNα to VBR+ETV did not result in significantly greater declines in HBV parameters compared with the dual-agent control arms
- Adding Peg-IFNα to VBR+ETV is unlikely to result in significant rates of functional cure following 24 weeks of treatment
- Next-generation core inhibitors with increased potency against pgRNA encapsidation/DNA replication and capsid disassembly/cccDNA formation may lead to deeper reductions in viral replication and lead to higher rates of functional cure in a combination regimen

References

al. J Hepatol. 2022;77:1265-75.

1) European Association for the Study of the Liver. J Hepatol. 2017;67:370-98. 2) World Health Organization. Global Hepatitis Report 2017. Geneva: World Health Organization; 2017. 3) World Health Organization. Key Facts. 2021. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b. Accessed on March 23, 2023. 4) El-Serag HB, et al. Gastroenterology. 2012;142:1264-73. 5) Chan HLY, et al. Lancet Gastroenterol Hepatol. 2016;1:185-95. 6) Buti M, et al. Lancet Gastroenterol Hepatol. 2016;1:196-206. 7) Chang T, et al. N Engl J Med. 2006;354:1001-10. 8) Seto W, et al. Lancet. 2018;392:2313-24. 9) Huang Q, et al. Antimicrob Agents Chemother. 2020;64:e01463-20. 10) Yuen MF, et al. Lancet Gastroenterol Hepatol. 2020;5:152-66. 11) Agarwal K, et al. J Viral Hepat. 2023;30:209-22. 12) Fung S, et al. Oral presentation at EASL, 2020. 13) Yuen MF, et al. J Hepatol. 2022;77:642-52. 14) Sulkowski M, et

Acknowledgments

- We express our gratitude to all the patients, investigators, and site staff who participated in the study
- This study was sponsored by Assembly Biosciences
- Writing and editorial support were provided by Duncan McCloskey, PhD, of AlphaBioCom, a Red Nucleus Company, and were funded by Assembly Biosciences

