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1. Introduction  

Methods  

Conclusions 
 This study highlights the critical role of having a tissue environment enriched in omega-3-PUFA to preserve 

and enhance mitochondrial efficiency in liver cells.  

 The omega-3-PUFA derivatives protect liver mitochondria from inflammatory injury and counteract the 
damaging actions of unresolved inflammation.  

 Since mitochondria are central organelles to the pathogenesis of metabolic dysfunction, this study 
underscores the critical role of maintaining healthy nutritional support with essential fatty acids during the 
clinical management of this disease. 
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Increased liver content of omega-3-derived lipid autacoids 
associates with enhanced mitochondrial oxidative phosphorylation, 

fatty acid β-oxidation and metabolic efficiency  

4. Results  

Our data uncover the importance of a 
lipid membrane composition rich in 
DHA and its lipid autacoid derivatives 
to have optimal mitochondrial and 
metabolic efficiency in the liver. 
 

Mitochondria are the cell powerhouse and are entrusted with the challenging task of providing energy 
to the cell through the generation of adenosine triphosphate (ATP) (1). Hepatocytes are rich in 
mitochondria and the liver is a key insulin-sensitive organ coordinating and fine-tuning the complex 
network(s) of human metabolism (2). At present, there is accumulating evidence that mitochondria are 
central organelles in the pathogenesis of metabolic dysfunction associated liver disease (3). In fact, 
defective mitochondrial electron transport chain (ETC) and impaired free fatty acid (FA) β-oxidation 
(FAO) together with excessive generation of radical oxygen species and lipid peroxidation play a key 
role in the development of persistent inflammation, increased oxidative stress and extensive liver cell 
death leading to liver injury and progression to liver fibrosis and, ultimately, to liver cirrhosis (4, 5). 
Based on these findings, any approach to improve mitochondrial function or to protect hepatocytes 
from mitochondrial damage is of major relevance for preventing liver-related metabolic dysfunctions.  

In the current study we investigated whether changes in the content of essential fatty acid-derived lipid 
autacoids affect hepatocyte mitochondrial bioenergetics and metabolic flux efficiency. 

Aim  

 Liver mitochondria ultrastructure by transmission 
electron microscopy (TEM). 

 Oxidative phosphorylation by high-resolution 
respirometry using OROBOROS. 

 FAO by radiolabeled [1-14C] oleate oxidation. 
 Bioenergetic metabolic fluxes by NADH/FADH2 

production. 
  Gene and protein expression were determined by real-

time PCR and western blot.  
 Lipidomic analysis by untargeted and targeted LC-

MS/MS. 
 Mechanistic studies in vitro were performed in 

hepatocytes exposed to tumor necrosis factor (TNF) α-
induced mitochondrial injury.  
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4.2 Enhanced mitochondrial FAO and energy substrate 
utilization in fat-1 mice. 

4.3 Identification of a specific DHA-enriched lipid fingerprint in fat-1 mice. 

4.4 DHA-derived lipid autacoids protect hepatocytes from 
TNFα-induced mitochondrial dysfunction 

4.1 Distinct liver mitochondrial TEM ultrastructure, expression 
of OXPHOS and fusion/fission balance in fat-1 mice. 
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4.5 Liver cells from fat-1 mice are protected from injury 
induced by steatogenic and fibrogenic diets 
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(A) Representative electron microscopy (TEM) images of ultrathin liver sections from WT (n=3) and fat-1 (n=3) mice at magnifications of 
×3,000 (upper panels), ×20,000 (medium panels) and ×50,000 (lower panels). (B) Number of mitochondria per field, Feret’s diameter and 
aspect ratio (major axis/minor axis) of each mitochondrion. (C) Western blot analysis of TIM44, TOM20 and GAPDH in liver tissue from WT 
(n=8) and fat-1 (n=8) mice. The densitometry of protein signals normalized to GAPDH are shown below. (D) Western blot analysis of 
OXPHOS complexes I-V in liver tissue from WT and fat-1 mice. (E) Western blot analysis of mitofusin 2 (Mfn-2), Optic Atrophy type 1 (OPA1), 
phosphorylated and total dynamin like protein-1 (DLP1), and GAPDH in liver tissue from WT and fat-1 mice. 
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(A) Substrates, protein uncouplers and inhibitors of mitochondrial 
electron transport chain. (B) Oxygen consumption rate of isolated 
mitochondria from livers of WT (n=9) and fat-1 (n=11) mice as 
measured by high-resolution respirometry using the 
substrate/inhibitor titration protocol. Glutamate/malate, GM; 
glutamate/malate/ADP, GMD; glutamate/malate/ADP/succinate, 
GMDS; FCCP, carbonylcyanide-4-(trifluoromethoxy)-
phenylhydrazone; rotenone, ROT; residual oxygen consumption, 
ROX. (C) Measurements of radiolabeled [1-14C]-oleate FAO of liver 
mitochondria from WT (n=13) and fat-1 (n=12) mice. (D) Metabolic 
rates of mitochondrial/glycolytic substrates in hepatocytes from fat-1 
(n=6) mice versus WT (n=10). *Malate was added at a concentration 
of 100 µM to these substrates. 

(A) Targeted LC-MS/MS analysis of arachidonic acid (AA), eicosapentaenoic acid (EPA), docosapentaenoic acid omega-3 (DPA n-3) and docosahexaenoic acid (DHA) levels in the liver from WT (n=3) and fat-1 (n=3) mice. (B) The hepatic omega-6 (n-6) to omega-3 (n-3)-
PUFAs ratio and (C) n-3 index as calculated by the total amount of EPA and DHA. (D) Pie charts of liver lipid class distribution in WT (n=3) and fat-1 (n=3) mice as assessed by untargeted LC-MS/MS analysis. (E) Lollipop charts of total content of phospholipid subclasses 
(PE, phosphatidylethanolamines; PS, phosphatidylserines; PI, phosphatidylinositols; PG, phosphatidylglycerols; BMP, bis(monoacylglycero)phosphates; PC, phosphatidylcholines and LPC, lysophosphatidylcholines). (F) Circos plot of the fold changes between fat-1 and 
WT mice of each individual phospholipid. The presence of DHA (C22:6) is highlighted in blue. Lipid values were log2 transformed before calculating the fold changes between fat-1 and WT mice. (G) Principal component analysis. (H) Heatmap of individual lipid species 
ranked by fold change (up-regulated, red; down-regulated, blue) and significant FDR changes between fat-1 and WT mice. (I) Volcano plot representing the levels of lipid species with the highest positive significant changes (red) and the highest negative significant 
changes (blue) between fat-1 and WT mice. 
 

A (A) Ranking of fold changes in the levels 
of lipid autacoids between fat-1 (n=3) and 
WT (n=3) mice as measured by targeted 
LC-MS/MS. (B) Bar plots of metabolic 
rate changes for TCA cycle substrates 
and intermediates, fatty acyl carnitines, 
amino acids and carbohydrates in WT 
hepatocytes (n=5) incubated for 6 h with 
either vehicle (0.1% BSA) or TNFα (20 
ng/mL). (C) Metabolic rate changes for 
TCA cycle substrates and intermediates 
in hepatocytes from WT mice (n=5) pre-
treated with either vehicle (0.03% 
ethanol), MaR1 (10 nM) or RvD1 (10 nM) 
for 1 h and stimulated with TNFα (20 
ng/mL) for 6 h. (D) Radar chart 
representing TCA cycle substrates and 
utilization of intermediates. (E) Metabolic 
rate changes for fatty acyl carnitines, 
amino acids and carbohydrates. *Malate 
was added to these substrates at a 
concentration of 100 µM. AKG: α-keto-
glutarate. 
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(A) Weekly body weights of WT (n=24) and fat-1 (n=18) mice receiving either a 
chow diet or high-fat diet (HFD) for 24 weeks. Endpoint body weights are shown in 
the inset. (B) Representative photomicrographs at x100 of magnification of liver 
sections stained with H&E of mice groups receivent either chow or HFD and (n=10) 
and fat-1 (n=8) mice receiving a fibrogenic choline-deficient L-amino acid-defined 
diet in combination with HFD (CDAHFD) for 24 weeks. (C) Oxygen consumption 
rate (OCR) of liver mitochondria from WT (n=13) and fat-1 (n=9) mice receiving 
HFD as measured by high-resolution respirometry. Inset: OCR of liver mitochondria 
from WT mice receiving either chow diet (n=11) or HFD (n=13). (D) OCR of isolated 
mitochondria from livers of WT (n=10) and fat-1 (n=8) mice receiving CDAHFD. 
Inset: OCR of liver mitochondria from WT mice receiving either chow diet (n=11) or 
CDAHFD (n=10). (E) FAO of mitochondria from livers mice receiving either chow 
diet, HFD or CDAHFD.  
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