

mTORC1 plays an important role in PiZ liver injury

The role of the mechanistic target of rapamycin (mTOR) in Alpha-1 Antitrypsin Deficiency

Introduction

- Alpha-1 Antitrypsin deficiency (AATD) is a hereditary disease with lung and liver manifestation
- Alpha1-antitrypsin (AAT) mutations lead to the retention of the otherwise secreted hepatocellular protein in the endoplasmic reticulum (ER)
- Liver disease arising due to the proteotoxic stress is the second leading cause of mortality in AATD

Aim

- Since liver disease in AATD is induced by chronic proteotoxic stress, proteostatic homeostasis is of particular relevance
- The mTOR pathway is an important regulator of protein synthesis and degradation and can be targeted by several FDA-approved drugs • In order to better understand the underlying mechanisms of the
- disease, the role of the mechanistic target of rapamycin (mTOR) in the AATD mouse model (PiZ mouse) was investigated

hepatocyte-specific mTOR knockout (mTORC1 & mTORC2)

hepatocyte-specific Raptor knockout (**mTORC1**)

hepatocyte-specific Rictor knockout (**mTORC2**)

Conclusions

- mTOR dysregulation leads to cell death under proteotoxic stress conditions
- ablation of mTOR and Raptor but not Rictor leads to liver injury in the PiZ mouse model
- mTORC1 disruption in PiZ mice leads to shutdown of many programs vital to hepatocytes, including protein folding machinery (chaperones), cMet and EGFR signaling, urea cycle and liver regeneration

L. BEWERSDORF¹, Y. LUO¹, A. SCHMITZ¹, T. CRAMER¹ and P. STRNAD¹ 1University Hospital RWTH Aachen, Germany

Results

Decreased survival, activation of pro-apoptotic signaling and liver regeneration defects after mTOR and Raptor knockout (mTORC1) in PiZ mice

Proteomics of liver tissue reveals a decrease in cMet and EGFR and a reduction of important urea cycle proteins

N-acetvlolutamate synthase

Reduced Z-AAT inclusion size, protein levels but decreased chaperone levels in PiZ mTOR Δ hep and PiZ Raptor Δ hep but not PiZ Rictor Δ hep mice

	Cre+ R∆hep		PiZ Cre+	Piz R	'iZ R∆hep	
94	-					
90	-			1		
in	-			-		
Н						

UNIKLINIK

RNTHAACHEN

THE INTERNATION LIVER CONGRESS

Poster Poster PostionOnline

Scan to

ILC2022