Background and aim

Accumulation of extracellular matrix (ECM) proteins is a hallmark of fibrosis, which can lead to altered tissue homeostasis, ergan failure and ultimately death. Many different cell types and growth factors are involved in this process, but fibroblasts ared the main source of ECM proteins. With the aim of investigating the effects of tumor growth factor (TGF)- β and platelet-derived rowth factor (PDGF)-AB and BB induced synthesis of different ECM proteins, we here present results from an in vitro model, using human fibroblasts.

$$
\text { Fibroblast stimulation with TGF- } \beta \text { or PDGF-AB or -BB }
$$

Induction of fibrogenesis

Methods

he effect of TGF- β and PDGFs on ECM protein synthesis was assessed in a scar-in-a-jar (Sia) cell model using human fibroblasts. Cells were seeded in 48 -well plates at 30.000 cells/well and incubated for 24 H in DMEM $+10 \%$ FBS for adherence. Serum starvation was done by seeding the cells for further 24 H in DMEM $+0.4 \%$ FBS. Fresh medium was added at day 0 with $25 / 150 \mathrm{mg} / \mathrm{mL}$ Ficoll $70 / 400$ and 1% ascorbic acid, containing 0.04 nM TGF- β, $3.9-$ - 0.39 -, or 0.039 nM PDGF-AB or -BB or a ehicle control. Medium was changed and collected at day $3,6,10$ and 13 . Biomarkers of collagen type I (PINP), III (PRO-C3), VI (PRO-C6) and fibronectin (FBN-C) formation were assessed in the medium by ELISAs developed at Nordic Bioscience.

Conclusions

Different growth factors induce different protein expression profiles in fibroblasts. Collagen synthesis is thus regulated differentially. This Sial model in combination with the investigated biomarkers of ECM formation could be used to elucidate the mechanisms behind acute and sustained ECM production profiles. This model setup applies to different diseases were fibroblasts play a role, including liver fibrosis.

