

INTRODUCTION

global obesity epidemic is a driver for obesity-related complications such as nonalcoholic fatty liver disease (NAFLD). The active 'hepatitic' subtype of NAFLD is non-alcoholic steatohepatitis (NASH) and potentially leads to liver fibrosis and cirrhosis. It is estimated that the prevalence of NAFLD in the general population is approximately 25% but increases to over 90% in morbidly obese subjects^{1,2}. It is important to validate the alarmingly high prevalence of NAFLD, including the occurrence of NASH, since these numbers are based on studies that differ in set-up (i.e. diagnostic tool, histological staging system).

AM

The aim of this study was to determine the prevalence of NAFLD in a cohort of morbidly obese subjects scheduled for bariatric surgery.

No NALFD was seen in 43.6 %, simple steatosis in 47.7% and NASH in 8.7% of subjects. Subjects with NAFLD were older than subjects without NAFLD (48.7 ± 10.3 y. vs 42.7 ± 10.8 y; p <0.001), had higher prevalence of hypertension (38.0% vs 18.5%; p = .012), type 2 diabetes(32.4% vs 10.8%; p = .002) and dyslipidemia (29.6% vs 12.3%; p = .014.

Subjects with NAFLD had a lower percentage of total body fat (44.7 ± 5.5% vs 47.8 ± 4.8%; p = .005), and a higher fat-free mass (55.9 \pm 5.5% vs $52.6 \pm 5.4\%$; p = .002), than patients with a healthy liver.

Of interest, preoperative weight loss was equal in subjects with healthy liver, NAFLD and NASH.

METHOD

In this prospective cohort study, 149 morbidly obese subjects scheduled for bariatric surgery were included. A standard metabolic work-up was performed and body composition was assessed using bioelectrical impedance analysis. Liver biopsies were obtained perioperatively and were evaluated by a panel of liver pathologists. Histological diagnosis was based on Steatosis Activity Fibrosis (SAF) score. NAFLD was categorized into simple steatosis when steatosis was present in > 5% of hepatocytes without ballooning or NASH if ballooning and inflammation were both present in the biopsy.

The prevalence of NAFLD in morbidly obese subjects revisited

Pathology Panel, J. Verheij¹

1 Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands. 2 Department of surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands.

RESULTS

Median (IQ range) BMI did not differ significantly: 38.0(35.2-40.5) vs 38.4(35.1-40.0) vs 38.5(37.1-40.9) in subjects with healthy liver, NAFLD and NASH, respectively.

Table 1. Baseline characteristics

<u>Demographic</u>

- Age at surgery (years), mean ± SD^a Female sex, n (%)^d
- <u>nthropometric</u>
- BMI at start (kg/m²), mean ± SD^a BMI at surgery (kg/m²), mean ± SD^a Waist circumference (cm), mean ± SD^a
- Total body fat (%), mean ± SD^a Fat-free mass (%), mean ± SD^a
- Systolic BP (mmHg), mean ± SD^a Diastolic BP (mmHg), mean ± SD^a
- aboratory parameters Fasting glucose (mmol/L), mean ± SD^a
- HbA1c (%), mean ± SD^a Fasting insulin (pmol/L), median (IQR)^b

HOMA-IR, median (IQR)^b Total cholesterol (mmol/L), mean ± SD^a HDL-cholesterol (mmol/L), mean ± SD^a LDL-cholesterol (mmol/L), mean ± SD^a Triglycerides (mmol/L), median (IQR)^b ALAT (U/L), median (IQR)^b

ASAT (U/L), mean ± SD^a γGT (U/L), median (IQR)^b

AF (U/L), mean ± SD^a CRP (mg/L), median (IQR)^b Leukocytes (x 10º/L), mean ± SDª Ferritin (µg/L), median (IQR)^b

Data are given in mean ± SD, median (IQR), or n (%). All post hoc analyses performed with Bonferroni correction. Significance level .05. ^a One-way ANOVA; ^b Kruskal-Wallis test; ^d Chi-square or Fisher's exact test. * Significant difference between healthy liver and NAFL group; ^ Significant difference between healthy liver and NASH group.

CONCLUSIONS

In sharp contrast to previous studies and to the general dogma that the prevalence of respectively NAFLD and NASH is 90% and 20% in subjects with (morbid) obesity, data from our large prospective Dutch cohort indicates that this prevalence is lower.

1. Bedossa P, Tordjman J, Aron-Wisnewsky J, et al. Systematic review of bariatric surgery liver biopsies clarifies the natural history of liver disease in patients with severe obesity. Gut. 2017;66(9):1688-1696. doi:10.1136/gutjnl-2016-312238

2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73-84. doi:10.1002/hep.28431

A.S. Meijnikman¹, N. Bosma¹, O. Aydin¹, M. De Brauw², H. Herrema¹, V.E.A. Gerdes¹, M. Nieuwdorp¹, A.K. Groen¹, Dutch Liver

All patients (n =	Healthy liver (n=65)	NAFL $(n=71)$	NASH (N=13)
149)			
46.0 ± 10.9	42.7 ± 10.8*	48.7 ± 10.3*	47.4 ± 11.0
112 (75.2%)	58 (89.2%)*^	47 (66.2%)*	7 (53.8%)^
41.6 ± 4.7	41.9 ± 5.2	41.3 ± 4.4	42.0 ± 3.4
 38.7 ± 4.3	38.6 ± 5.2	38.6 ± 3.7	39.2 ± 3.2
122.7 ± 11.4	118.7 ± 10.3*^	125.3 ± 10.6*	132.4 ± 16.7^
46.1 ± 5.4	47.8 ± 4.8*	44.7 ± 5.5*	44.4 ± 5.3
54.1 ± 5.6	52.6 ± 5.4*	55.4 ± 5.5*	55.6 ± 5.3
132.0 ± 14.3	128.1 ± 14.1*	135.8 ± 14.3*	130.9 ± 10.5
80.8 ± 10.6	78.7 ± 10.3	82.7 ± 11.0	80.9 ± 8.7
6.0 ± 1.3	5.6 ± 1.2*	6.2 ± 1.3*	6.3 ± 1.0
5.9 ± 0.9	6.0 ± 0.9	5.8 ± 0.8	6.2 ± 1.6
85.0	72.0	101.0	120.2
(57.0-133.0)	(46.8-100.8)*^	(66.5-156.0)*	(90.0-151.7)^
3.2 (2.2-5.3)	2.5 (1.6-3.5)*^	4.0 (2.4-6.6)*	4.6 (3.4-6.1)^
4.8 ± 1.1	4.9 ± 1.1	4.7 ± 1.2	5.0 ± 1.0
1.2 ± 0.3	1.3 ± 0.3	1.2 ± 0.4	1.1 ± 0.3
3.1 ± 1.0	3.2 ± 1.0	3.0 ± 0.9	3.5 ± 0.9
1.4 (1.1-1.8)	1.2 (0.9-1.6)*	1.5 (1.2-1.9)*	1.6 (1.2-2.4)
28.0	25.0	30.0	38.0
(21.0-41.0)	(19.0-35.0)*^	(22.0-42.0)*	(29.5-49.0)^
25.9 ± 9.4	24.2 ± 8.5	26.6 ± 10.2	30.2 ± 9.0
25.0	22.0	30.0	24.0
(18.0-38.5)	(17.0-27.5)*	(22.0-42.5)*	(17.5-40.0)
83.0 ± 21.8	84.5 ± 21.2	83.0 ± 22.7	75.6 ± 19.7
3.2 (1.7-5.5)	3.2 (1.8-5.2)	3.1 (1.5-5.9)	3.8 (2.0-6.9)
7.4 ± 2.0	7.2 ± 1.6	7.8 ± 2.2	6.5 ± 1.8
97.0	90.0	92.5	154.5
(48.0-172.0)	(49.0-151.0)	(43.0-182.5)	(82 3-203 5)

BMI at start (kg/m BMI at surgery (kg/m Start weight (kg), me **Operative weight (k Preoperative weight I** mean ± SD^a < 6 kg preoperative we</p> 6-8 kg preoperative wei > 8 kg preoperative wei

NAFL, and NASH

Hypertension, n (%)d Type 2 diabetes melli Dyslipidemia, n (%)^d Metabolic syndrome, n

Table 4. Insulin resistance in patients with healthy liver, NAFL, and NASH

Insulin resistance, n (No insulin resistance,

REFERENCES

Amsterdam UMC **Jniversity Medical Centers**

Table 2. Preoperative weight loss in patients with healthy liver, NAFL, and NASH

	Healthy liver (n=65)	NAFL (n=71)	NASH (n=13)
an ± SDª	41.9 ± 5.2	41.3 ± 4.4	42.0 ± 3.4
mean ± SDª	38.6 ± 5.2	38.6 ± 3.7	39.2 ± 3.2
± SDª	120.6 ± 17.4	124.3 ± 19.0	131.3 ± 20.4
nean ± SDª	111.2 ± 16.5	115.9 ± 16.4	122.5 ± 18.4
s percent (%),	7.7 ± 4.7	6.6 ± 3.3	6.6 ± 2.4
ght loss (kg), n (%) ^d	12 (18.5%)	15 (21.1%)	2 (15.4%)
ght loss (kg), n (%) ^d	16 (24.6%)	26 (36.6%)	4 (30.8%)
ght loss (kg), n (%) ^d	37 (56.9%)	30 (42.3%)	7 (53.8%)

Table 3. Prevalence of metabolic risk factors in patients with healthy liver,

	Healthy liver (n=65)	NAFL (n=71)	NASH (n=13)
	12 (18.5%)*	27 (38.0%)*	4 (30.8%)
s, n (%) ^d	7 (10.8%)*	23 (32.4%)*	4 (30.8%)
	8 (12.3%)*	21 (29.6%)*	1 (7.7%)
(%) ^d	33 (50.8%)*^	53 (74.6%)*	12 (92.3%)^

	Healthy liver (n=55)	NAFL (n=62)	NASH (n=13)
d	21 (38.2%)^	33 (53.2%)~	12 (92.3%)^~
(%)	34 (61.8%)	29 (46.8%)	1 (7.7%)

ACKNOWLEDGEMENTS

We thank J.C.M. Borger, D. Zwirs, the nursing staff and all patients for making this study possible.

CONTACT INFORMATION

Abraham S Meijnikman, MD, Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands.

E-mail: <u>a.s.meijnikman@amc.uva.nl</u>

