

INTRODUCTION Patients with hepatitis B e antigen (HBeAg)negative chronic infection, also called inactive carriers, have normal transaminases and a low viral load They usually have hepatitis B virus (HBV) DNA levels < 2,000 IU/mL¹⁻³ Some patients in this phase, however, may have HBV DNA levels between 2,000 and **20,000 IU/mL**¹ The natural history of this subgroup in Caucasian patients is not well-characterized To explore factors predicting outcome during long-term follow-up METHOD Multicentre retrospective cohort study The study identified all consecutive chronic HBV patients of the participating centres between 1 January 1986 and 31 July 2018 who fulfilled the following inclusion criteria: Caucasian race > 1 year follow-up

- HBeAg negative and anti-HBe positive
- HBV DNA < 20,000 IU/mL
- persistently normal ALT levels over at least a period of 12 months
- **Exclusion criteria**:
- Previously treated with HBV antiviral agents
- Advanced liver disease at presentation
- Co-infection, alcohol abuse, evidence of other coexisting liver disease
- Primary outcome: development of chronic active hepatitis B, i.e. $ALT > 2 \times ULN$ and HBVDNA > 2,000 IU/mL whether or not with HBeAg reversion¹⁻³
- Estimates on the rate of active hepatitis B were calculated using the Kaplan Meier method

- (86.0%) cause

Long-term outcome in Caucasian patients with hepatitis B e antigen negative chronic infection: an observational cohort study

<u>ÖM Koc¹⁻³, G Robaeys^{1,2,4}, H Topal⁴, R Bielen^{1,2}, D Buscchots^{1,2}, ME Gamil⁴, J Fevery⁴, GH Koek^{3,5}, F Nevens⁴</u> 1Ziekenhuis Oost-Limburg, Genk, Belgium; 2Hasselt University, Hasselt, Belgium; 3Maastricht UMC+, Maastricht, the Netherlands; 4University Hospitals KULeuven, Leuven, Belgium; 5University Hospital of the RWTH, Aachen, Germany

RESULTS

437 Caucasians were included (Table 1)

During a mean follow-up of 12 years, 376 showed sustained remission, whereas 36 (8.2%) developed chronic active hepatitis B. Twenty-five patients (5.7%) had ALT level > 2 x ULN of unknown

 Out of 36 patients with active hepatitis B, 14 were considered to be the result from immunosuppressive therapy given for other diseases

• Figure 1 illustrates the spontaneous progression to chronic active hepatitis B by baseline HBV DNA level in 423 Caucasian patients (i.e. after excluding those with immunosuppression-related HBV reactivation)

The incidence of chronic active hepatitis B was significantly higher in patients with baseline HBV DNA level \geq 2,000 IU/mL than in patients with baseline HBV DNA level < 2,000 IU/mL (p < .001)

Advanced liver disease, cirrhosis, hepatocellular carcinoma (HCC) and liver-related mortality developed in 18/423 (4.3%), 6/423 (1.4%), 0/423 (0.0%) and 1/423 (0.2%) patients, respectively

The cumulative probabilities of advanced liver disease were 2.3%, 4.3%, 8.6% and 17.0% at 5, 10, 15 and 20 years follow-up. Among those with HBV DNA < 2,000 IU/mL these data were 1.3%, 1.8%, 3.6% and 9.2%

HBV DNA > 2,000 IU/mL and obesity were independent predictors of advanced liver disease (p = .001 and p = .006)

developed chronic active hepatitis B.

Characteristics	All (n=437)	Sustained remission (n=376)	Chronic active hepatitis B (n=36)	<i>P</i> Value
Baseline Age (years)	34 <u>+</u> 13.6	34 <u>+</u> 13.4	33 <u>+</u> 12.6	.544
Gender, males (%)	220 (50.3)	188 (50.0)	17 (47.2)	.750
Obesity†, (%)	35 (8.0)	30 (8.0)	1 (2.8)	.343
Baseline ALT level (IU/mL)	24 <u>+</u> 8.1	24 <u>+</u> 8.3	26 <u>+</u> 7.0	.127
qHBsAg level (IU/mL) ^{‡,§}	362 <u>+</u> 2107.6	365 <u>+</u> 1665.3	304 <u>+</u> 3348.9	.779
Baseline HBV DNA, (log IU/mL) [‡] HBV DNA quantified, (%) HBV DNA <u>></u> 2,000 IU/mL, (%) HBV DNA <u>></u> 5,000 IU/mL, (%)	2.2 <u>+</u> 3.15 268 (61.3) 91 (20.8) 46 (10.5)	2.2 <u>+</u> 3.09 231 (61.4) 67 (17.8) 37 (9.8)	3.3 <u>+</u> 3.51 26 (72.2) 20 (55.6) 6 (16.7)	.002 .202 < .001 .247
HBV DNA <u>></u> 10,000 IU/mL (%)	19 (4.3)	14 (3.7)	3 (8.3)	.178

Values shown as mean <u>+</u> standard deviation or as n (%) Abbreviations: ALT: alanine aminotransferase; qHBsAg: quantification of hepatitis B surface antigen \pm +Obesity was defined as BMI > 30 kg/m²

‡Mann-Whitney U nonparametric test was used instead and medians + interquartile range (IQR) were shown as appropriate §Data on qHBsag were available in 156/437 (35.7%) patients

Figure 1 Cumulative probabilities of development to chronic active hepatitis B in 423 Caucasian patients with HBeAg-negative chronic infection by baseline HBV DNA level. Patients were censored on the date of last outpatient clinic visit

Table 1. Baseline Characteristics of 437 Caucasian patients with HBeAg-negative chronic infection. A total of 376 individuals had sustained remission of liver inflammation, while 36

CONCLUSIONS

• In Caucasian patients with HBeAg-negative chronic infection, the level of viremia affects prognosis

Patients with HBV DNA level < 2,000 IU/mL confer a favourable prognosis with **no risk of HCC**, which suggests that there is no need for intensive follow up and screening for

 In contrast, patients with a HBV DNA level > 2,000 IU/mL are at risk of spontaneous development of a chronic active hepatitis and need further specialized follow up

6 ACKNOWLEDGEMENTS

This study is part of the 'Limburg Clinical Research Program' (LCRP), supported by the foundation Limburg Sterk Merk, Province of Limburg, Flemish government, Hasselt University, Ziekenhuis Oost-Limburg and Jessa Hospital.

7 - REFERENCES

European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. Journal of hepatology. 2017;67(2):370-98 2. Terrault NA et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. *Hepatology.* 2018;67(4):1560-99 3. Sarin SK et al. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. *Hepatology*

ozgur.koc@uhasselt.be +32.89.321519

