Real-World Effectiveness and Safety of Glecaprevir Plus Pibrentasvir in HCV: A Multi-Country Analysis of Post-Marketing Observational Studies

Pietro Lampertico¹, Markus Peck-Radosavljevic², Mark Bondin³, Yves Horsmans⁴, Nasser Semmo⁵, Sadhana Sonparote³, Zhenzhen Zhang³, Ariel Porcalla³, Ella Veitsman⁶, Konstantinos Mimidis⁷, Robert Flisiak⁸, Dominique Thabut⁹

¹CRC "AM e A Migliavacca" Center for Liver Diseases, Division of Gastroenterology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy; ²Department of Internal Medicine and Gastroenterology, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria; ³AbbVie Inc., North Chicago, Illinois, United States; ⁴Cliniques Universitaires Saint-Luc, UCL, Brussels, Belgium; ⁵Department of BioMedical Research, Hepatology, Inselspital, University of Bern, CH-3010 Bern, Switzerland; ⁶Liver Unit, Rambam Health Care Campus, Haifa, Israel; ⁷First Department of Internal Medicine, Democritus University of Thrace Medical School, Alexandroupolis, Greece; ⁸Department of Infectious Diseases and Hepatology, Medical University of Białystok, Poland; ⁹Paris Sorbonne Université, AP-HP, Hôpital Pitié Salpêtrière, Service d'Hépatologie, Paris, France

Presented at the European Association for the Study of the Liver's 54th Annual International Liver Congress, 10–14 April 2019, Vienna, Austria

BACKGROUND

- For patients with chronic hepatitis C virus (HCV) infection, significant heterogeneity exists in access to direct-acting antiviral (DAA) drugs and treatment patterns across different countries
- It is therefore crucial to evaluate the effectiveness and safety of the most recently approved pangenotypic DAAs in real-world
- Glecaprevir/pibrentasvir (G/P), an interferon-free, ribavirin-free, fixed-dose DAA combination, was approved in the United States and Europe in 2017 for the treatment of patients chronically infected with HCV genotype (GT) 1–6¹

G/P is Approved for Patients With HCV GT1–6

pangenotypic NS3/4 protease inhibito.

Pibrentasvir pangenotypic NS5A inhibitor

- 8-week duration approved for treatment-naïve patients with HCV genotype (GT) 1-6 infection and without cirrhosis
- Pangenotypic SVR12 rate of 98% in more than 2200 patients in registrational studies
- Potent against common polymorphisms (eg, Y93H in NS5A and Q80K in NS3)
- Favorable safety profile irrespective of baseline factors Recent real-world results demonstrate that G/P achieved high SVR12 rates consistent with

G/P dosed as 3 pills taken once daily with food for a total dose of 300 mg/120 mg. Glecaprevir was identified by AbbVie and Enanta

those observed in clinical trials^{2,3}

OBJECTIVE

This pooled analysis aims to evaluate the real-world effectiveness and safety of G/P in patients with chronic HCV infection in ongoing post-marketing observational studies (PMOS)

METHODS

STUDY DESIGN

the PMOS: Austria, Belgium, France, Greece, Israel, Italy, Poland, and Switzerland

Data were pooled from 8 countries currently participating in

- Data were collected from 13 November 2017 to 1 February 2019
- Patients with chronic HCV GT1–6 infection were eligible for the PMOS if they were receiving G/P at the treating physician's discretion according to local label, national or international recommendations, and/or local clinical practice
- Eligible patients were HCV treatment-naïve or interferon-, ribavirin-, and/or sofosbuvir-experienced, and were without cirrhosis or with compensated cirrhosis
- Cirrhosis status was most often assessed using transient elastography

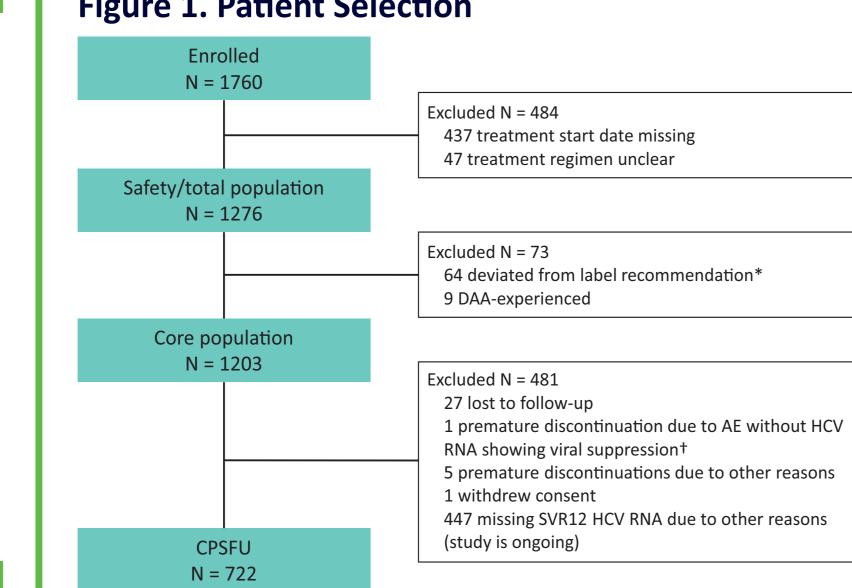
DISCLOSURES

Pietro Lampertico: Speaker bureau and/or advisory board: Bristol-Myers Squibb, Roche, Gilead, GSK, AbbVie, MSD, Arrowhead, Alnylam, and Janssen. Markus Peck-Radosavljevic: Consultant: AbbVie, Bristol-Myers Squibb, Gilead, and MSD; Speaker: AbbVie, Gilead, and MSD. Yves Horsmans: Consultant: AbbVie, Bristol-Myers Squibb, Gilead, Janssen, and Merck. Nasser Semmo: Advisory board: Gilead and MSD; Speaker: AbbVie. Ella Veitsman: Nothing to disclose. Konstantinos Mimidis: Advisory boards/lectures: AbbVie. Mark Bondin, Sadhana Sonparote, Zhenzhen Zhang, and Ariel Porcalla: Employees of AbbVie Inc. and may hold stock or stock options. Robert Flisiak: Grants, advisory boards and honoraria: AbbVie, Gilead, Merck, and Roche. Dominique Thabut: Speaker: AbbVie, MSD, Gilead, Gore, and Alfasigma.

AbbVie sponsored the study; contributed to its design; and participated in the collection, analysis, and interpretation of the data and in the writing, reviewing, and approval of the presentation. All authors had access to relevant data, and participated in the writing, review, and approval of the presentation.

METHODS (CONTINUED)

DATA ANALYSIS


- Demographics and clinical characteristics at baseline and safety data were summarized for all patients who received ≥1 dose of G/P (safety/total population)
- Effectiveness was evaluated using the core population with sufficient follow-up (CPSFU), defined as:
- Patients treated according to the label with known drug start date, excluding patients who did not have an HCV ribonucleic acid (RNA) evaluation after post-treatment Day 70 due to reasons not related to effectiveness or safety (lost to follow-up or unavailable HCV RNA data)
- To be included in the CPSFU, a patient had to have 1 of the
- HCV RNA data after post-treatment Day 70 (not included if the drug end date is unknown)
- Virologic failure (on-treatment virologic failure or post-treatment relapse)
- Discontinued the study due to an adverse event (AE) and had HCV RNA <50 IU/mL at the last measurement
- Effectiveness was measured as sustained virologic response at post-treatment Week 12 (SVR12), defined as HCV RNA below the lower limit of quantification (LLOQ, <50 IU/mL) at ≥70 days after the last dose of G/P
- Treatment adherence was calculated as the percentage of tablets taken relative to the total tablets expected to be taken
- Safety was assessed by monitoring AEs and laboratory abnormalities

RESULTS

STUDY POPULATION

• As of 1 February 2019, 1760 patients were enrolled: 1276 in the safety population; 1203 in the core population; 722 in the CPSFU (Figure 1)

Figure 1. Patient Selection

- Deviations included 7 patients with cirrhosis who were treated for 8 weeks (to date, 3 of these patients have achieved SVR12) Patients with premature discontinuation due to AE and last HCV RNA <50 IU/mL were included in the CPSFU. AE, adverse event; CPSFU, core population with sufficient follow-up; DAA, direct-acting antiviral; HCV, hepatitis C virus; RNA, ribonucleic acid; SVR12, sustained virologic response at post-treatment Week 12.
- Of 1276 patients who received ≥1 dose of G/P, 1143 (89.6%) were non-cirrhotic and 1083 (85.1%) were HCV treatment-naïve (Table 1) As a result, 1096 patients (85.9%) were assigned to G/P for 8 weeks,
- whereas 165 (12.9%) and 15 (1.2%) of patients were assigned to G/P for 12 and 16 weeks, respectively (Table 1) The mean ± standard deviation (SD) time since diagnosis of HCV
- In 1153 patients with available data, adherence to treatment was >99% (mean ± SD, 99.7% ± 2.3%)

infection was 11.6 ± 9.5 years

Data are n (%) unless stated otherwise; percentages are calculated from non-missing values. *Cirrhosis was defined as METAVIR, Batts and Ludwig, Knodell, IASL, Scheuer, or Laennec stage 4, ISHAK stage ≥5, APRI, aspartate aminotransferase-to-platelet ratio index; ARFI, acoustic radiation force impulse elastography; G/P, glecaprevir/pibrentasvir; GT, genotype; HCV, hepatitis C virus; IV, intravenous; RNA, ribonucleic acid.

RESULTS (CONTINUED)

Table 1. Demographics and Clinical Characteristics at Baseline

Characteristic	N = 1276
Male	690 (54.1)
Age, median (range), years	53 (18–88)
HCV GT	
1	707 (56.2)
2	157 (12.5)
3	265 (21.0)
4	119 (9.5)
5	7 (<1.0)
6	4 (<1.0)
Missing	17
Mode of HCV infection	
Contaminated needle or IV drug use	382 (30.4)
Blood product transfusion	197 (15.7)
Vertical transmission (mother to child)	22 (1.8)
Contact with infected individual (other than transmission)	62 (4.9)
Surgery/operation	72 (5.7)
Occupational exposure	13 (1.0)
Unknown	508 (40.4)
Missing	20
Referral source (>3%)	
General practitioner	411 (45.9)
Hepatologist	233 (26.0)
Gastroenterologist	81 (9.1)
Infectious disease specialist	52 (5.8)
Addiction center	30 (3.4)
Missing	381
Fibrosis stage	
F0-F1	593 (78.8)
F2	44 (5.8)
F3	52 (6.9)
F4	64 (8.5)
Missing	523
Fibrosis staging technique	
FibroScan [™]	703 (93.4)
Biopsy	41 (5.4)
FibroTest [™]	8 (1.1)
ARFI	1 (<1.0)
Missing	523
APRI score	
≤1	714 (77.9)
>1	202 (22.1)
Missing	360
No cirrhosis*	1143 (89.6)
Prior HCV treatment	
Naïve	1083 (85.1)
Experienced	189 (14.9)
Sofosbuvir-based	6 (<1.0)
Interferon-based	165 (13.0)
Missing	4
HCV RNA, median (range), Log ₁₀ IU/mL	6.1 (0.7–8.4)
G/P treatment duration	
8 weeks	1096 (85.9)

Approximately one-third of the population reported current

(<6 months) or prior (>6 months) recreational drug use and

131 (10.8%) were on stable opioid substitution therapy (Table 2)

virus (n = 54; 4.2%) or hepatitis B virus (n = 18; 1.4%) (Table 2)

Table 2. Comorbidities at Baseline

A minority of patients were coinfected with human immunodeficiency

omorbidity, n (%)	N = 1276
ecreational drug use*	426 (34.2)
Current or within 6 months prior to screening	103 (8.3)
6 to 12 months prior to screening	9 (<1.0)
More than 12 months prior to screening	311 (25.0)
None	818 (65.8)
Missing	32
n stable opiate substitution therapy	
Yes	131 (10.8)
No	1085 (89.2)
Missing	60
hronic kidney disease	
≥90 mL/min	440 (50.9)
≥60-<90 mL/min	358 (41.4)
≥30-<60 mL/min	32 (3.7)
<30 mL/min	34 (3.9)
Missing	412
ialysis treatment	17 (1.3)
IV coinfection	54 (4.2)
BV coinfection	18 (1.4)
istory of depression or bipolar disorder	88 (6.9)
istory of cardiovascular disease	307 (24.1)
istory of diabetes	92 (7.2)
entages are calculated from non-missing values.	

*Of 426 patients with recreational drug use, type of illicit drug was: heroin, 58.0%; cocaine, 27.0%; marijuana, 13.8%; hashish, 8.9; opioids, 4.2%; other, 21.4% (patients could report >1 drug type). HBV, hepatitis B virus; HIV, human immunodeficiency virus.

- More than half of the population (n = 692) were receiving comedications (Table 3)
- The most common comedications (prescribed or non-prescribed) were antithrombotic drugs (n = 113; 8.9%), anxiolytics (n = 112; 8.8%), drugs used in addictive disorders (n = 109; 8.5%), and beta blocking drugs (n = 103; 8.1%) (Table 3)

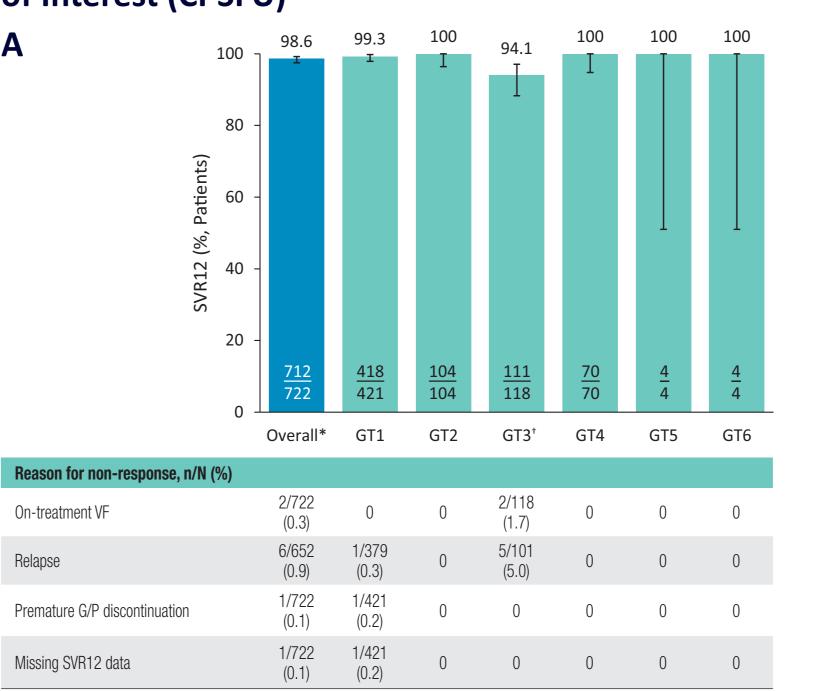
Table 3. Comedications at Baseline

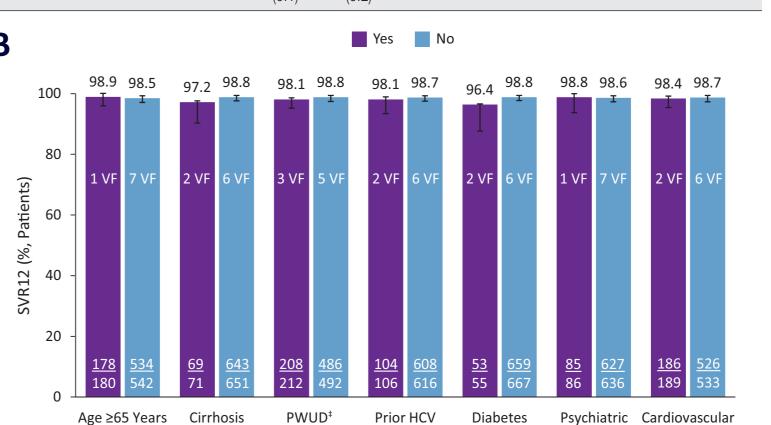
Comedication (in >5% of patients), n (%)	Total population N = 1276
Any concomitant medication	692 (54.2)
Antithrombotic drugs	113 (8.9)
Anxiolytics	112 (8.8)
Drugs for addictive disorders	109 (8.5)
Beta blocking drugs	103 (8.1)
Antidepressants	98 (7.7)
Drugs for peptic ulcer and gastro-oesophageal reflux	82 (6.4)
ACE inhibitors	77 (6.0)
Selective calcium channel blockers	75 (5.9)

Comedications administered during the treatment period. ATC code 3 used ACE, angiotensin converting enzyme

EFFECTIVENESS

165 (12.9)


15 (1.2)


- Overall, the SVR12 rate was 98.6% (712/722) (Figure 2A)
- There were 8 patients with virologic failure (2 on-treatment virologic failures and 6 relapses), of whom 7 had HCV GT3 infection (Table 4)

- Three patients who had virologic failure were confirmed as having

achieved SVR12 on retest after 1 February 2019 (data cut-off date) • SVR12 rates across HCV GTs (Figure 2A) or subgroups of interest (Figure 2B) were generally similar

Figure 2. SVR12 Rates With G/P Treatment (A) Overall and by HCV GT and (B) by Subgroups of Interest (CPSFU)

[†]At the time of the data cut and subsequent analysis, two GT3 patients were confirmed as having achieved SVR12 on retest. Post hoc

§Prior experience with pegylated interferon (or interferon) and/or ribavirin and/or sofosbuvir; no prior experience with DAAs other CPSFU, core population with sufficient follow-up; DAA, direct-acting antiviral; G/P, glecaprevir/pibrentasvir; GT, genotype; HCV, hepatitis C virus; PWUD, persons who use drugs; SVR12, sustained virologic response at post-treatment Week 12; VF, virologic failure.

Table 4. Patients With Virologic Failure

Patient	Country	HCV GT	Cirrhosis status	Prior HCV treatment	G/P treatment duration	G/P treatment completion	Adherent*	PWUD	Outcome
1	Belgium	3	NC	TN	8 weeks	Yes	Yes	No	Relapse
2	France	3a	NC	TN	8 weeks	Yes	Yes	No	Relapse
3	Poland	3a	NC	TN	8 weeks	No	Yes	No	EOT positive [†]
4	Poland	3	NC	TN	8 weeks	No	Yes	No	EOT positive [†]
5	Switzerland	3a	NC	TN	8 weeks	Yes	Yes	Yes	Relapse
6	Switzerland	3a	NC	TN	8 weeks	Yes	Yes	Yes	Relapse
7	Belgium	1	CC	TE‡	12 weeks	Yes	Yes	No	Relapse [†]
8	Italy	3a	CC	TE§	16 weeks	Yes	Yes	Yes	Relapse

[†]Patient confirmed as having achieved SVR12 on retest. [‡]Patient received prior treatment with interferon.

Patient received prior treatment with peginterferon plus ribavirin CC, compensated cirrhosis; EOT, end of treatment; G/P, glecaprevir/pibrentasvir; GT, genotype; HCV, hepatitis C virus; NC, non-cirrhotic; PWUD, persons who use drugs; TE, treatment-experienced; TN, treatment-naïve; VF, virologic failure.

SAFETY

- Treatment with G/P was well tolerated with no G/P-related serious AEs and a low rate of DAA-related AEs leading to premature G/P discontinuation (n = 5; 0.4%) (Table 5)
- The most common AEs were fatigue (n = 36; 2.8%), asthenia (n = 27; 2.1%), headache (n = 25; 2.0%), and nausea (n = 14; 1.1%) (Table 5)
- Elevations of alanine aminotransferase were uncommon and did not occur with total bilirubin elevations; no cases consistent with drug-induced liver injury were identified (Table 5)

- Elevations of total bilirubin were consistent with the labeled G/P-mediated inhibition of bilirubin transport and metabolism Bilirubin elevations were not associated with hepatic decompensation (Table 5)
- One hepatic decompensation event (ascites) developed in 1 patient with baseline evidence of synthetic dysfunction and risk factor for passive congestion of the liver

Table 5. AEs and Laboratory Abnormalities With G/P Treatment

	Total population N = 1276
AEs	
Any AE	192 (15.0)
DAA-related AEs	106 (8.3)
Serious AEs	14 (1.1)
DAA-related serious AEs	0
AEs leading to discontinuation of study drug	7 (0.5)
DAA-related AEs leading to discontinuation of study drug*	5 (0.4)
Deaths [†]	5 (0.4)
Common AEs (occurring in ≥1.0% of patients)	
Fatigue	36 (2.8)
Asthenia	27 (2.1)
Headache	25 (2.0)
Nausea	14 (1.1)
Laboratory abnormalities	
Post-nadir ALT >5 × ULN	1/732 (0.1)
Total bilirubin ≥2 × ULN	15/732 (2.0)
Post-nadir ALT $>$ 3 \times ULN and total bilirubin $>$ 2 \times ULN with a direct bilirubin: total bilirubin ratio $>$ 0.4	0/732

CONCLUSIONS

In patients with chronic HCV infection, the effectiveness and safety of G/P in these real-world observational studies were consistent with results seen in registrational trials

AE, adverse event; ALT, alanine aminotransferase; DAA, direct-acting antiviral; G/P, glecaprevir/pibrentasvir;

- The overall SVR12 rate was 98.6%, which was generally unaffected by HCV GT or subgroups of interest
- Treatment was well-tolerated with no G/P-related serious AEs; laboratory abnormalities and hepatic decompensation events were rare
- Enrollment, treatment, and follow-up are ongoing

REFERENCES

1. MAVYRET (US package insert); AbbVie 2018 / MAVIRET (SmPC); AbbVie 2019.

fatigue, and muscle cramps (n = 1); high creatinine value (n = 1); ascites (n = 1).

2. Wiegand J, et al. *Hepatology*. 2018;68:364A (abstract #611) 3. D'Ambrosio R, et al. J Hepatol. 2019;70:379-87.

ACKNOWLEDGMENTS

Medical writing support was provided by Paul MacCallum, PhD, of Fishawack Communications Ltd., funded by AbbVie.

Scan QR code to download an electronic version of this presentation and other AbbVie EASL-ILC 2019 Scientific Presentations. To obtain a QR code reader, go to your device app store and search for "QR code reader." QR code expiration: 22 April 2019

