

A NTCP model for mortality after chemo-RT for lung cancer including mean heart dose and GTV

G. Defraene¹, S. Arredouani¹, W. van Elmpt², M. Lambrecht¹, D. De Ruysscher²

¹KU Leuven - University of Leuven, Department of Oncology, Experimental Radiation Oncology, B-3000 Leuven, Belgium ²Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands

Early mortality after (chemo)radiotherapy can be caused by treatment-related toxicities and thus by delivered doses to normal lung and heart.

- Prediction models for early mortality incorporating dosimetry are lacking.
- This study explores the prognostic value of common dosimetric features and constructed a normal tissue complication probability (NTCP) model for mortality.

METHODS AND MATERIALS

- **DATASETS**: Two prospective cohorts of curatively treated stage I-III lung cancer patients were studied
 - Dataset 1: 388 patients treated in 2003-2016
 - Dataset 2: 98 patients treated in 2011-2016 (external validation set)
- Prescribed dose was 66Gy/2Gy (concurrent chemotherapy), 66Gy/2.75Gy (sequential or no chemotherapy) or similar schedules.
- Clinical covariates analyzed: WHO performance status, age, current smoker, T stage and primary gross tumor volume (GTV) (combining primary tumor and involved lymph nodes).
- Dosimetric covariates analyzed: mean lung dose (MLD) and mean heart dose (MHD)).
- **STATISTICS**: In dataset 1, factors with p<0.1 in univariate Cox regression were included in multivariable Cox model building and in logistic regression NTCP model building for the endpoints 6, 12, 18 and 24 months mortality.
- NTCP models were validated in dataset 2 after a refit of model coefficients.

RESULTS

COX REGRESSION RESULTS

NTCP MODELING RESULTS

• Mortality model at 6 months (AUC=0.73) included the covariates:

- Median follow-up time was 30.8 and 43.3 months in dataset 1 and 2, respectively.
- Multivariable Cox model covariates:
 - MHD (HR=1.026, p<0.001)
 - GTV (HR=1.002, p<0.001)
 - Current smoker (HR=1.39, p=0.03)
 - WHO performance status (HR=1.24, p=0.03)
- Survival curves show an increased mortality associated with higher MHD starting 6 month post RT (Figure 1).

Figure 1 (a) Kaplan-Meier curves for overall survival (OS) in dataset 1. Subgroup analysis based on the upper quartiles of total (primary tumor + lymph nodes) GTV volume (>128.9 cc) and physical MHD (>15.1 Gy). The worst survival was observed for high MHD associated to large GTV (grey curve) with a 1 year OS of 29.8%, 2 year OS of 18.6% and no survivals longer than 30 months. The best survival was seen in the subgroup of patients with both MHD and GTV outside of the upper quartiles (blue curve) with a 1 year OS of 75.5% and 2 year OS of 46.6%. (b) MHD and GTV for all patients in dataset 1 (excluding censored cases before 36 month). Mortality in the high MHD-small GTV region occurs mostly during the 6 to 18 month timeframe (blue circles).

- GTV, Age, Current smoker
- Mortality model at **12 months** (AUC=0.71) included the covariates: GTV, MHD
- Mortality model at **18 months** (AUC=0.71) included the covariates: GTV, MHD, WHO performance status, Current smoker
- Mortality model at **24 months** (AUC=0.72) included the covariates: GTV, WHO performance status, Age, Current smoker
- MHD was selected in 40%, 100%, 87% and 47% of best performing models (this was only 27%, 47%, 33% and 33% for MLD) at 6, 12, 18 and 24 months. • The 12 month mortality NTCP model had the highest MHD OR=1.042 (p=0.006) and is depicted in Figure 2.

Mean Heart Dose (Gy)

Figure 2 Logistic regression NTCP model for 12 month mortality. MHD dependence (physical dose) of mortality risk for different GTV volumes (primary tumor + lymph nodes). Model calibration was good: Hosmer-Lemeshow p=0.49. Model discrimination was moderate: discrimination slope of 15.6% and AUC of 0.71 (95% CI: 0.63; 0.77). Probabilities can be calculated using NTCP=(1+e^{-S})⁻¹ with S=-1.53+0.041*MHD+0.0057*GTV.

• In the external validation dataset 2, the 12 and 18 months NTCP models had respective AUCs of 0.60 (0.65 when adding WHO PS) and 0.67. MHD OR was 1.050 (p=0.11) at 12 months.

CONCLUSION

- MHD is a risk factor independent from GTV volume for post RT mortality endpoints later than 6 months and before 18 months. \bullet
- A NTCP model for 12 months mortality could allow patient selection for proton therapy. \bullet

This work was partly funded by the European Union's Seventh Framework Programme under grant agreement no 601826: **REQUITE** project

e-mail: gilles.defraene@kuleuven.be

rocter

