Objectives/Purpose

- The optimal adjuvant management for patients with atypical meningioma remains controversial, particularly after a gross total resection (GTR).
- The goal of this study was to review long-term outcomes in such patients aiming at identifying potential factors that associate with disease progression.
- In a parallel manner we investigated the following issues:
 - The minimal volume of residual disease that represent a cut-off at which radiotherapy should not be delayed beyond.
 - The growth pattern of atypical meningiomas with or without radiotherapy.
 - The time of disease progression between volumetric and planimetric measurement.

Patients and methods

- From August 1992 to August 2013, we found 70 patients with atypical meningioma treated at our institution (Table 1).
- Pathology review was performed based on WHO-2007 criteria, presence of brain invasion or a mitotic index of 4 or more per 10 high power field (HPF), either alone or combined. The diagnosis was also confirmed on the basis of the additive criteria of three or more of the 5 atypical histological features: area of geographic necrosis, nuclear pleomorphism, loss of architecture (cheating), high cellularity and the presence of focal small hypercellular clone.
- Patients with history of neurofibromatosis type 2, previous cranial radiotherapy, multiple lesions, previously resected grade I lesion that had transformed to a grade II at time of recurrence or inadequate imaging follow-up were excluded from this study.
- We performed pre- and post-operative measurements of tumor volume from magnetic resonance imaging. We assessed age, gender, tumor location, bone involvement, brain invasion, mitotic figure, pre-operative disease volume, extent of resection, use of adjuvant post-operative radiation therapy (PORT), and residual tumor volume at time of radiation therapy (RT) by uni- and multivariate analysis to determine their potential impact on disease recurrence (Table 1).
- Tumor growth rates were calculated directly from changes in volume over time based on real residual disease delineation at each MRI from the baseline throughout the follow-up for each patient.
- Statistical methods used to calculate recurrence-free survival (RFS), uni- and multivariate analysis and estimation of cut-off residual disease volume were Kaplan-Meier, Log rank test, Cox proportional model and Youden’s Index statistic, respectively.
- 40 patients (57%) underwent a gross total resection (GTR) and 30 (43%) underwent a subtotal resection (STR).
- PORT was delivered to 12 patients (30%) with a GTR and to only four (13%) with a subtotal resection (STR).
- With a median follow up time of 68.9 months, the 5-year progression-free survival (PFS) for GTR patients with or without PORT was 100% and 54.1%, respectively, (p=0.0058, 95%CI 66.4 - 123.3).
- Whereas, PFS for STR patients with or without PORT was 75% and 0%, respectively, (p=0.00026, 95%CI 7.7 - 16.53).

Results

- On multivariate analysis, STR and PORT were found to be the only independent significant prognostic factors that associated with disease progression, with corresponding hazard ratios of 5.4873 (95%CI 2.19 - 13.72, p=0.0003) and 0.0464 (95%CI 0.0059 - 0.364, p=0.0035), respectively.
- Based on Youden’s index statistic, a cut-off value that correspond to a residual volume of more than 8.76 cm³ at time of RT was associated with worse PFS (9% vs 56%, p=0.0079, 95%CI 16.37 - 123.3).
- In patients before receiving RT, the median relative and absolute growth rates, and tumor doubling time were 124.2%/year, 4.8 cm²/year and 1.67 year, respectively.
- These indices changed after RT to be 0.245%/year for relative growth rate, minus 0.09 cm²/year for absolute growth rate and minus 0.005 year for the doubling time, respectively, p > 0.05 for all comparisons, “negative values represent tumor shrinkage.”
- An earlier detection of failure was documented by measuring changes in residual tumor volumetrically rather than planimetrically (with median time lag of 18 months), Fig. 4.
- At time of disease progression detection, the median tumor volume was 4.89 cm³ on volumetric measurement compared to a median volume of 12.3 cm³ for planimetric measurement,
- The tumor volume will be already at least 50% larger by the time of planimetric detection, p = 0.0003.

Conclusion

- Atypical meningioma can behave aggressively and the disease progression rate, even after a GTR, remains high.
- The routine use of PORT remains a controversial issue particularly after GTR.
- Our data suggest that PORT reduces the disease progression rate and should be considered in most patients.
- Our study provides new information on the importance of using volume measurement to determine disease progression.
- This study identified variables of prognostic impact and parameters on tumor growth rates that may aid physicians in selecting patients that may benefit from an earlier adjuvant PORT
- The potential benefit of PORT post-GTR in patients with atypical meningioma needs to be confirmed on a randomized trial.

Address for correspondence

Address for correspondence and reprint requests: Luis Souhami, M.D., Department of Radiation Oncology, McGill University Health Centre, 1001 Decarie Boulevard, DS-1620
Montreal, Quebec, Canada H4A 3J1
(e-mail: luis.souhami@mcgill.ca).

Table 1. Patient characteristics, Univariate analysis (UVA) and Multivariate analysis (MVA)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Gender</th>
<th>Tumor Location</th>
<th>Baseline</th>
<th>Invasion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >55</td>
<td>Female</td>
<td>Gyrus</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Age <55</td>
<td>Male</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

2. Youden’s index: A statistic that can be used to determine a cut-off value that corresponds to a residual volume of more than 8.76 cm³ at time of RT was associated with worse PFS (9% vs 56%, p=0.0079, 95%CI 16.37 - 123.3).
3. In patients before receiving RT, the median relative and absolute growth rates, and tumor doubling time were 124.2%/year, 4.8 cm²/year and 1.67 year, respectively.
4. These indices changed after RT to be 0.245%/year for relative growth rate, minus 0.09 cm²/year for absolute growth rate and minus 0.005 year for the doubling time, respectively, p > 0.05 for all comparisons, “negative values represent tumor shrinkage.”
5. An earlier detection of failure was documented by measuring changes in residual tumor volumetrically rather than planimetrically (with median time lag of 18 months), Fig. 4.
6. At time of disease progression detection, the median tumor volume was 4.89 cm³ on volumetric measurement compared to a median volume of 12.3 cm³ for planimetric measurement,
7. The tumor volume will be already at least 50% larger by the time of planimetric detection, p = 0.0003.
8. Atypical meningioma can behave aggressively and the disease progression rate, even after a GTR, remains high.
9. The routine use of PORT remains a controversial issue particularly after GTR.
10. Our data suggest that PORT reduces the disease progression rate and should be considered in most patients.
11. Our study provides new information on the importance of using volume measurement to determine disease progression.
12. This study identified variables of prognostic impact and parameters on tumor growth rates that may aid physicians in selecting patients that may benefit from an earlier adjuvant PORT
13. The potential benefit of PORT post-GTR in patients with atypical meningioma needs to be confirmed on a randomized trial.

Background

- The Statistical analysis was also confirmed on the basis of the additive criteria of three or more of the 5 atypical histological features: area of geographic necrosis, nuclear pleomorphism, loss of architecture (cheating), high cellularity and the presence of focal small hypercellular clone.
- Patients with history of neurofibromatosis type 2, previous cranial radiotherapy, multiple lesions, previously resected grade I lesion that had transformed to a grade II at time of recurrence or inadequate imaging follow-up were excluded from this study.
- We performed pre- and post-operative measurements of tumor volume from magnetic resonance imaging. We assessed age, gender, tumor location, bone involvement, brain invasion, mitotic figure, pre-operative disease volume, extent of resection, use of adjuvant post-operative radiation therapy (PORT), and residual tumor volume at time of radiation therapy (RT) by uni- and multivariate analysis to determine their potential impact on disease recurrence.
- Tumor growth rates were calculated directly from changes in volume over time based on real residual disease delineation at each MRI from the baseline throughout the follow-up for each patient.
- Statistical methods used to calculate recurrence-free survival (RFS), uni- and multivariate analysis and estimation of cut-off residual disease volume were Kaplan-Meier, Log rank test, Cox proportional model and Youden’s Index statistic, respectively.
- 40 patients (57%) underwent a gross total resection (GTR) and 30 (43%) underwent a subtotal resection (STR).
- PORT was delivered to 12 patients (30%) with a GTR and to only four (13%) with a subtotal resection (STR).
- With a median follow up time of 68.9 months, the 5-year progression-free survival (PFS) for GTR patients with or without PORT was 100% and 54.1%, respectively, (p=0.0058, 95%CI 66.4 - 123.3).
- Whereas, PFS for STR patients with or without PORT was 75% and 0%, respectively, (p=0.00026, 95%CI 7.7 - 16.53).