Multicentre initiative for standardisation of image biomarkers

Image Biomarker Standardisation Initiative (IBSI)

Why standardise image biomarkers?
Medical image analysis may be used to improve cancer treatment, for example through:
- Prognosis of treatment success and plan adaptation
- Early detection of malignant lesions
- Identification of radio-resistant tumour segments

Medical image analysis requires calculation of image biomarkers (features). Examples are tumour volume, mean tumour image intensity and textural smoothness.

Image biomarkers and image processing lead to many degrees of freedom in implementation. Standardisation is required to:
- Reduce variation between clinical trials involving image biomarker analysis
- Ensure that clinical findings reflect metabolic processes instead of differences in implementation

Participants
- Study leader: Alex Zwanenburg
- Cardiff University
- Philip Whybra, Emmanouil Spezi
- Dana Farber Cancer Institute and Brigham and Women’s Hospital, Harvard University
- Anthony Aris, Hugo Aerts
- Gemelli ART, Università Cattolica del Sacro Cuore
- Jacopo Lanckriet, Luca Baldini, Nicola Dianapì, Vincenzo Valentini
- German Cancer Research Center (DKFZ)
- Michael Gütz, Nils Gähler, Fabian Isensee, Klaus H. Maier-Hein
- INSERM Brest, University of Brest
- Marie-Charlotte Douarret, Tamar Udupaiya, Mathieu Hatt
- Leiden University Medical Center
- Floris H.P. van Velden
- MAASTRO clinic, Maastricht University
- Ralph T.W. Leijenaar, Philippe Lambin
- McGill University
- Martin Vallières, Issam El Naqa
- Memorial Sloan Kettering Cancer Center
- Aditya Apte
- Moffitt Cancer Center
- Mahmoud A. Abdulmah, Robert Gilles
- Oncoray - National Center for Radiation Research in Oncology and NCT Dresden
- Alex Zwanenburg, Stefan Leger, Esther Troost, Christian Richter, Steffen Löck
- The Netherlands Cancer Institute (NKI)
- Jost van Ginthuysen, Cuong Viet Dinh, Ulrike van der Hoeve
- Universitätsklinikum Tübingen, Eberhard Karls University Tübingen
- Jairo Socarras Fernandez, Fiona Lippert, Daniela Thonwarth
- University Hospital Zürich, University of Zürich
- Maria Bogowicz, Stephanie Tanadini-Lang, Matthias Guckenger
- University of Bergen
- Arne Losnegård
- University of California, San Francisco
- Olivier Morin
- University of Groningen, University Medical Center Groningen
- Lisanne V. van Dijk, Jorn Blouking, Nanna M. Sijtsma, Roel J.H.M. Steenbakkers, Ronald Boellaard

Phase 1: Feature standardisation
- Participants extract features from digital phantom, without image processing
- Extracted feature values are collected and shared
- Issues in definition and implementation are iteratively resolved

Phase 2: Image processing benchmarks
Benchmark of image processing based on CT image data of lung cancer patient. Methodology is similar to phase 1, but focuses on image processing instead.

Example case:
- Trilinear interpolation to 2x2x2 mm
- Resegmentation of gross tumour volume region of interest (ROI) to [-500, 400] HU range
- No spatial filters
- Discretisation using 25 HU wide bins

Current status:
- Identify and resolve differences in segmentation and interpolation procedures

Conclusions:
- Benchmarking of features is recommended: high initial differences
- Standard values found for most features