FMISO-PET & perfusion CT at baseline & week 2 CRT as predictive markers for response in rectal cancer

<u>T Greenhalgh</u>¹, J Wilson², T Puri¹, J Franklin¹, L Wang⁴, R Goldin⁵, K Chu¹, V Strauss⁶, M Partridge¹, T Maughan¹

- 1. Department of Oncology, University of Oxford, UK, 2. Institute of Cancer Research, London, UK, 3. Department of Pathology, Oxford University Hospitals NHS Foundation Trust, UK
- 4. Centre for Pathology, Imperial College London, UK, 5. Centre for Statistics in Medicine, Oxford Clinical Trials and Research Unit, University of Oxford, UK (Clinical Track: Lower GI)

Background

- Patients with locally advanced rectal cancer are considered for neoadjuvant chemoradiotherapy (CRT) if they have high risk operable or borderline/unresectable disease¹
- Around 15% of patients having CRT have a complete pathological response with a similar proportion showing minimal tumour response²
- Hypoxia reduces response to RT and is associated with a more aggressive phenotype³
- This study explores the predictive value of hypoxia functional imaging using FMISO-PET and perfusion CT (pCT) in patients undergoing CRT for rectal cancer

Methods

- Patients were recruited from Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, UK from October 2013 to April 2016
- Inclusion criteria were:
 - Undergoing neoadjuvant CRT for confirmed rectal adenocarcinoma
 - ≥18 years old with performance status 0-2
 - MRI demonstrating mesorectal fascia, levators or anal sphincter were involved or threatened (≤1mm) by tumour
- Imaging with FMISO-PET and pCT was done at baseline and during week 2 CRT
- FMISO SUVmax, pCT blood flow (BF) and blood volume (BV) were obtained:
 - Tumour region of interest (ROI) outlined by radiologist on contemporaneous T2W MRI
 - Rigid registration and transposition of ROI to pCT or FMISO-PET CT on Varian Eclipse
 - FMISO-PET tumour (T) and muscle (M) SUVmax obtained using PMOD software
 - GE perfusion 4.0 maps created and analysed using MIRADA DBx to obtain BV and BF

Conclusions

- In this small pilot study, a reduction in FMISO uptake was not predictive of response based on tumour regression grade/clinical outcome measures
- Significant challenges in delivery and interpretation of FMISO PET scanning for rectal cancer were seen, in particular related to excretion of FMISO
- No association was seen between perfusion CT parameters and response larger scale studies would be required to establish the value of this modality

Results

Characteristics

- 11 patients with locally advanced rectal adenocarcinoma were recruited

 - Median age 67 (IQR 19)
 Stage T2 2 (18%), T3 9 (82%)
 - 9 male (82%)
- Stage NO 4 (36%), N1 6 (55%), N2 1 (9%)
- All patients had neoadjuvant CRT 45 Gray in 25 fractions with concurrent Capecitabine chemotherapy twice daily
- Imaging was done at median 1 (range 0-14) days before CRT and on day of fraction 10 (7-15) during CRT
- After CRT, 8 (73%) underwent total mesorectal excision, 2 (18%) active surveillance and 1 (9%) declined surgery
- Patients were classed as good (n=6) or poor (n=5) responders based on AJCC v7.04 tumour regression grade or response on endoscopy/MRI if no surgery

pCT

- All patients had evaluable pCT at baseline and week 2 CRT (Table 1)
- There was no relationship with response seen (Figure 1)

Figure 1: Change in median BF (a) & BV (b) from baseline to week 2 CRT Poor (red) or good (blue) response

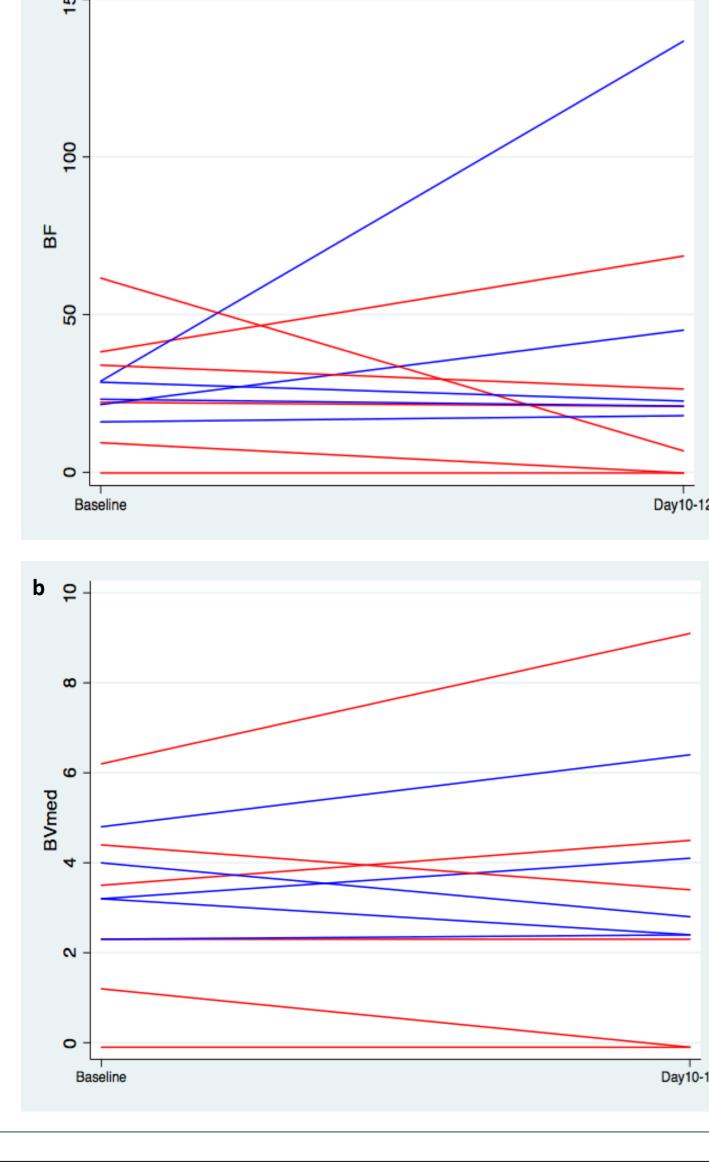


Table 1: Median BV and BF (IQR) at baseline and during chemoradiotherapy

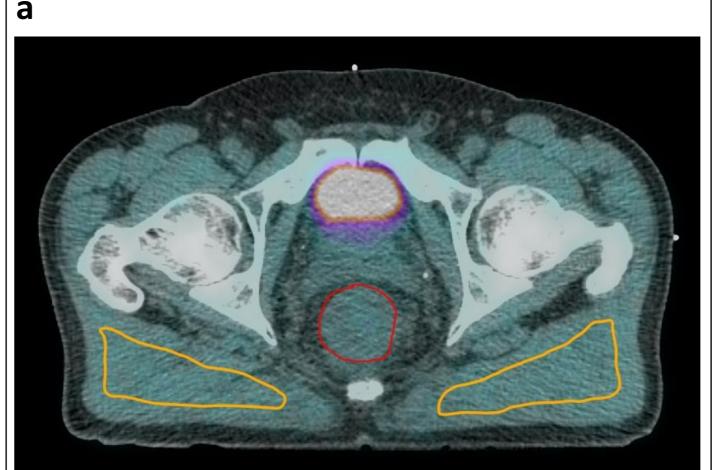

Parameter	Baseline	Week 2 CRT
BV	3.2 (2.1)	2.8 (2.2)
BF	23.2 (18)	21 (38.3)

Table 2: Change in Tumour: Muscle (T:M) SUVmax ratios between baseline and week 2 CRT U/E unevaluable, N/A non-applicable

#	Response	T:IVI SUVmax (baseline)	T:IVI SUVmax (on CRT)	T:M % change
1	Good	1.4	2.2	157%
2	Good	U/E	U/E	U/E
3	Poor	2.4	1.6	67%
4	Poor	2.8	2.1	75%
5	Good	U/E	1.4	U/E
6	Poor	1.6	N/A	N/A
7	Good	2.3	1.6	71%
8	Good	2.2	1.3	59%
9	Poor	2.1	1.3	62%
10	Good	N/A	N/A	N/A
11	Poor	1.1	1.3	119%

FMISO PET

- 1 patient did not undergo FMISO scanning due to tracer not being available
- 8/10 4-hour scans were evaluable at baseline and 8/9 during week 2 CRT
- In 5/7 patients with paired evaluable scans, the T:M ratio reduced however this showed no correlation with outcome (Table 2, Figure 2)
- Reasons for scans being unevaluable were (Figure 3):
 - Non-tumour uptake in the lumen due to colonic excretion of FMISO
 - Spill-in from adjacent bladder activity

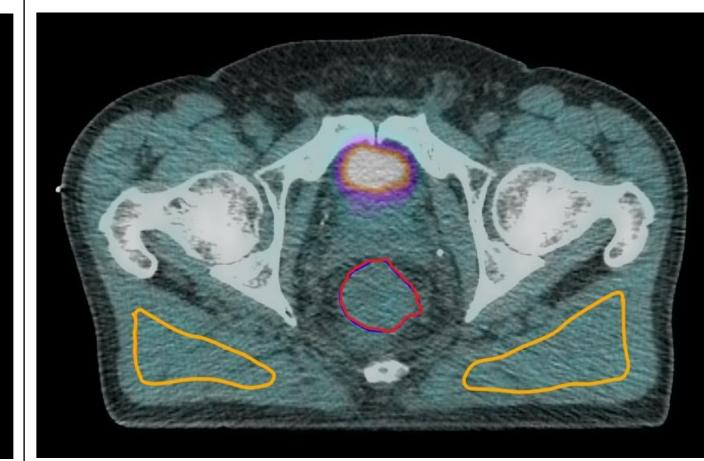
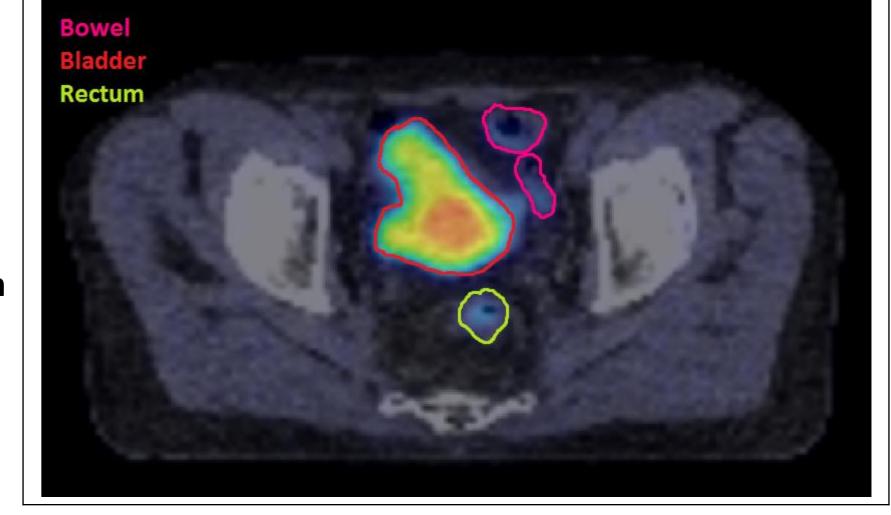



Figure 2: Patient 1 FMISO-PET at baseline (a) and week 2 CRT (b) (Rectal tumour red, muscle orange)

Figure 3: Example of activity seen due to FMISO excretion in bladder and bowel

NHS

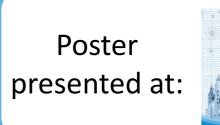
Contact: Tessa.Greenhalgh@oncology.ox.ac.uk

References:

- 1. National Institute for Health and Care Excellence. Colorectal cancer: diagnosis and management (CG131). 2011
- 2. Zorcolo L et al. Ann Surg Oncol. 2012;19(9):2822-32
- 3. Horsman MR et al. Nature Reviews Clinical Oncology 2012;9(12):674-687
- 4. Compton CC et al. AJCC Cancer Staging Atlas. New York: Springer-Verlag; 2012

Oxford Biomedical Research Centre

National Institute for Health Research



CANCER IMAGING CENTRE

The NIHR Oxford Biomedical Research Centre is a partnership between Oxford University Hospitals NHS Trust and the University of Oxford.

