Detection and analysis of scattered protons for verification of FLASH lung tumor proton therapy

Magdalena Garbacz¹, Reinhard Schulte², Vladimir Bashkirov², Mingcheng Gao³, Mark Pankuch³, Christina Sarosiek⁴, Robert P. Johnson⁵, Jose Ramos Mendez⁶, Antoni Rucinski¹, Pawel Olko¹ ¹Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland, ²Loma Linda University, Loma Linda, USA, ³Northwestern Medicine Chicago Proton Center, Warrenville, USA, ⁴Northern Illinois University, DeKalb, USA, ⁵Santa Cruz Institute for Particle Physics- University of California, Santa Cruz, USA, ⁶University of California, San Francisco, USA.

magdalena.garbacz@ifj.edu.pl

Introduction

Ultra-high dose rate (FLASH) proton therapy (PT) delivers a high dose of protons in a fraction of a second, lowering the normal tissue toxicity. The plateau region of the proton beam might be used as a shoot-through technique. Available proton beam energies at medical centers allows for lung cancer irradiation, which will stop the Bragg peak outside the patient. Protons will be scattered in various directions from the tumor due to large-angle scattering. The surrounding low-density lung tissue will produce less scattering, thus the high-density materials can be visible during measurement.

Charged particles exiting the patient during therapy might be used to determine the beam range in the patient. That can be achieved with a method called interaction vertex imaging (IVI). The basis of the method is to reconstruct the trajectories of the scattered charged particles and find the point of creation (vertex) [1]. The production of scattered particles can also give an information about the position of high-density anatomical structures on the beam path, which can be useful for lung cancer therapy. The purpose of this work was to test a new idea of verifying FLASH proton therapy by analyzing scattered protons from tissue-equivalent plastics.

Methods

We collected the experimen- We back-projected the registered tal data at the Northwestern particle tracks onto the plane Medicine Chicago Proton Cen- containing the beam axis. The ter (NMCPC). We placed 4-cm profile of the signal was then anlong, 1.9-cm diameter cylindri- alyzed and compared to the outcal tissue-equivalent inserts of put from a TOPAS simulation.

various density into a Styrofoam holder (Figure 1) and irradiated them with a stationary proton pencil beam with energies ranging 40 MeV to 220 MeV. The two-plane tracking detector of a preclinical proton CT scanner [2] detected scattered protons at a rate of about 1 million particles

Experimental conditions and beam model parametrization

The NMCPC has a 230 MeV The lateral beam size was mea-IBA cyclotron and four treat- sured at isocenter with Lynx ment rooms: two inclined-beam detector and the virtual source rooms, one fixed beam room and distance (VSD) was estimated one 360 gantry room. The ex- based on lateral beam size at difperiment was conducted in the ferent distance from the beam fixed-beam room (see Figure 2). nozzle. The agreement of the To define the beam parameters beam size between measurements for the MC simulations commis- and simulations was of the orsioning data and additional mea- der of 3%. The dosimetric calisurements were used.

bration was performed using the IBA Matrix PT in solid water and was cross-calibrated with the IBA PPC05 chamber in a water tank for absolute dose.

per second. The energy detector of the scanner provided the trigger signal for data acquisition.

Figure 1. Scheme of experimental setup implemented in TOPAS.

Figure 2. Experimental setup.

The absolute dose measurements agreed with the TOPAS simulation within 0.17%.

Results

Figures 3 and 4 shows the back-surements and simulation of T projected profile of the protons profile (Figure 3 and 4, first colalong the beam axis scattered umn) reflects the size of insert from a tissue-equivalent inserts: of 4 cm. The FWHM of lateral spinal cord (1.07 cc/g) and corti-profiles (V profile, Figure 3 and cal bone (1.75 cc/g). The protons 4, second column) were $22.7 \,\mathrm{mm}$ had a nominal energy of 140 MeV and 18.4 mm for spinal cord and and 200 MeV for spinal cord and 16.7 mm and 15.1 mm for cortical cortical bone, respectively. The bone fitted from measurements profiles show the position and size and simulation, respectively. of the insert with millimeter accuracy. Both results from mea-

row).

Figure 4. The back-projected profiles of spinal disc insert from measurement of cortical bone insert from (upper row) and simulation (lower measurement (upper row) and simulation (lower row).

Conclusions and Future Work

This study shows that the profiles of backprojected scattered protons may be used to monitor the position and size of tumors surrounded by low-density material during high-dose-rate delivery of protons. This technique appears suitable for intra-treatment monitoring of FLASH radiation therapy of lung tumors with shoot-through beams. The MC simulations with a well-defined patient geometry and beam model could be used to predict the expected beam scattered proton profile during the treatment and would form the basis for verification. Further experiments will include setups with lung motion phantoms and comparison with refined TOPAS simulations.

Bibliography

[1] Krimmer, L. et al. Real-Time Online Monitoring of the Ion Range by Means of Prompt Secondary Radiations. 3rd International Conference On Advancements In Nuclear Instrumentation Measurement Methods And Their Applications (ANIMMA 2013), Jun 2013, Marseille, France. pp.1-8

[2] Johnson R et al. A Fast Experimental Scanner for Proton CT: Technical Performance and First Experience With Phantom Scans. IEEE Transactions on Nuclear Science, 2015, 63(1):1-1

Acknowledgments

MG acknowledges the support of InterDokMed project no. POWR.03.02.00-00-I013/16.

Physics track: Intra-fraction motion management

Magdalena Garbacz

DOI: 10.3252/pso.eu.ESTRO2020.2020

Poster presented at: ESTRO

