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BACKGROUND and METHODS

Compared to the analysis of endemic equilibrium, analyzing
the dependence of the endemic cycle on the epidemiologi-
cal parameters is a complex and relatively unexplored prob-
lem. Even the question of cycle continuation with respect to
parameters presents a significant challenge. The concept of
’cycle continuation’ refers to how cyclic dynamics change as
the parameter changes. Understanding how this continuation
works — whether the cycle remains stable or persists — pro-
vides valuable insights into the emergence and disappearance
of endemic seasonal epidemics, as well as the possibility of
biennial or multi-year cyclic outbreaks. Our approach offers
a new tool for addressing these challenging questions and
sheds light on the complex dynamics of infectious diseases
over time.
The approach is based on bifurcation theory, a rigorously
derived methodology designed to study nonlinear dynamical
systems with parameters and the qualitative changes in their
dynamics. Most importantly, this method allows us to move
within parameter ranges or intervals where we can confidently
predict certain qualitative dynamics. This includes equilibria,
which may relate to disease eradication or endemic stability,
and cycle attractors, signifying endemic cycles. Furthermore,
the theory allows us to understand their synchronization or
desynchronization with seasonal variations and other external
factors.

Epidemic cycles and seasonality

Endemic cycles can arise due to various factors, such as sea-
sonal vaccination or waning immunity, where individuals lose
their immunity after a certain period and become suscep-
tible again, limited capacity of the health care system, or
externally driven factors, where transmission rates vary with
seasons due to environmental changes or due to some be-
havioral changes. Such cyclic behaviors can result in regular
outbreaks or oscillations in disease prevalence, even in the
absence of new external infections. [1]
We present a novel method for analyzing seasonality in com-
partmental epidemiological models. Our method involves em-
bedding a dynamical system, such as the SEIRS type model,
into a higher-dimensional state space with a seasonal attract-
ing cycle. To achieve this, we use a parameterized normal
form of the Hopf bifurcation to introduce an artificial vari-
able that impacts the parameters with variable amplitude
seasonal fluctuations. Despite the additional complexity, our
approach affords the ability to analyze the system using stan-
dard detection and continuation methods and programs, such
as MatCont. [2]

Embedding method (technical)

Seasonality is usually implemented as harmonically driven
SEIRS model. Let us briefly explain the embedding method
that enables using standard cycle continuation methods.
Suppose, the system can be expressed in the following form:

ẋ = f(x, A sin ωt,ααα), (1)
where f : Rm+p+1 → Rm is a function smooth enough, and
ααα ∈ Rp are given parameters, A sin ωt signifies a harmonic
external force. When amplitude A and frequency ω are ad-
justed appropriately, the external oscillation causes the oscil-
lator to synchronize. The system (1) can be embedded into
an autonomous system:

ẋ = f(x, u2,ααα),
u̇1 = εu1 − ωu2 − u1(u2

1 + u2
2),

u̇2 = ωu1 + εu2 − u2(u2
1 + u2

2),
(2)

The newly incorporated 2-dimensional driving system for
u = (u1, u2)T is a normal form of a supercritical Hopf bi-
furcation. For negative ε, it possesses a stable equilibrium
at the origin, whereas, for positive ε, a stable limit cycle
S = {(u1, u2) : u2

1 + u2
2 = ε} exists. Thus, for ε = A2,

the dynamics of the system (2) on the invariant manifold
Rm × S are identical (topologically equivalent) to the system
(1) dynamics. The asymptotic stability of cycle S assures
good numerical properties for the continuation of bifurcation
manifolds of the system. While in the driving system the
artificial parameter ε introduces a stable limit cycle at zero,
in the system (2), the manifold ε = 0 gives birth to a torus
as the original system already has natural oscillations.
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RESULTS

We demonstrate the advantages of this approach and its potential applications in both theoretical biology and practical
problems related to respiratory epidemics, including the Covid-19 pandemic. We demonstrate how to address important
epidemiological questions using our approach. These questions can include determining the feasibility of eradicating an
endemic disease, assessing the possibility of a transition from massive COVID-19 outbreaks in a naive population to a
seasonally synchronized respiratory disease, and exploring other important issues related to the control and prevention of
infectious diseases.
As an model example we use a SEIRS-type model with transmissibility rates β1,2, partial immunization with waning rate
w, standard parameters σ, γ (1/σ average incubation duration, 1/γ average infectious period), and q, ξ denoting the rate
of getting partial immunity due to vaccination or infection. But any other model can be taken.

SEIRS-type model

Ṡ = −β1(1 + f (t))(SI)p + wM − qS, susceptibles
Ṁ = −β2(1 + f (t))(MI)p + qS − wM + ξ(1 − S − M − E − I), partially immunized
Ė = β1(1 + f (t))(SI)p + β2(1 + f (t))(MI)p − σE, exposed
İ = σE − γI, infectious

with rate of nonlinearity p, seasonal variation f (t) and parameters β1,2, w, q, γ, ξ, and σ.

Tending to a seasonal attractor

Seasonality cannot be measured during beginning states,
since the dynamical system has to settle down to a 1-year
cycle attractor. The seasonal effect is observed after this
transient period. Massive COVID-19 outbreaks are not in
contradiction with seasonally synchronized respiratory dis-
ease cycles after a few years.
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Figure 1: In case of a new disease/variant, seasonal cycles can be ob-
served after 2 or 3 years, but not immediately within the first 2 outbreaks.
Here, we simulated 0% (red) and 30% (blue) seasonal transmissibility
variation with partial immunization and immunity waning. Parameters
used: β1 = 400, β2 = 133, ε = 0 (red trajectory tending to endemic
equilibrium), or β1 = 300, β2 = 100, ε = 0.09 (blue trajectory, black
endemic cycle), q = 1, w = 4, ξ = 2, σ = 70, γ = 36, p = 1 simulate
COVID-19. Moreover, you can see that the immunity waning and other
parameters may influence the prevalence fluctuation period in case of no
or small seasonal transmissibility variation.

Effect of nonlinear incidence rate

In the real-world, nonlinear incidence rates in SEIRS-type
models arises due to a variety of factors (saturation effects in
crowded settings, behavioral changes, limitations in health-
care resources, the existence of multiple pathogen strains with
different transmission rates; and environmental factors like
weather and humidity, etc.). Measuring of this parameter p
is an issue that can be overcome by setting it as an unknown
parameter.

Embedding

Ṡ = −β1(1 + x))(SI)p + wM − qS,

Ṁ = −β2(1 + x)(MI)p + qS − wM +
+ξ(1 − S − M − E − I),

Ė = β1(1 + x)(SI)p + β2(1 + x)(MI)p − σE,

İ = σE − γI,

ẋ = εx − 2πy − x(x2 + y2),
ẏ = 2πx + yε − y(x2 + y2).

Embedding and continuation of cycles with respect to p re-
veals a hysteresis phenomenon. Existence of two branches
of cycles leads to abrupt jump to massive outbreaks and de-
synchronization due to period doubling route to chaos.
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Figure 2: Seasonal cycle continuation with respect to the rate of non-
linearity p reveals hysteresis due to possibility to continue also unstable
cycles in the 6D embedding system. Stable seasonal cycles are depicted
in blue. Parameters used: β1 = 300, β2 = 100, ε = 0.09, q = 1, w = 4,
ξ = 2, σ = 70, γ = 36 simulate COVID-19 with 30% seasonal transmis-
sibility variation and partial immunization with waning.

Jumps from an endemic cycle –
possibility of eradication

Non-intuitive jumps to massive outbreaks described above
are not the only possible abrupt changes that may emerge.
Here, we present a possible non-intuitive eradication due to
slightly higher non-linearity in the incidence rate.
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Figure 3: Sometimes non-intuitive dynamics may be explained and vi-
sualized in 3D space. Here you can see the attractor endemic cycle with
shape that explains two outbreaks in one year and crossing separatrix
surface in parameter-state space that enables eradication due to faster
transmissions. Parameters used: β1 = 300, β2 = 100, ε = 0.04, q = 0.5,
w = 4, ξ = 2, σ = 70, γ = 36 simulate COVID-19 with p = 1.1 (blue
endemic biannual cycle) and p = 1.2 (red eradication).
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