EPS3.09

44th EUROPEAN **CYSTIC FIBROSIS** CONFERENCE 9-12 June 2021 #ECFS2021

Biofilm formation in MRSA isolated in Cystic Fibrosis patients is strain-dependent and differentially influenced by antibiotics

1 INSERM U1047, Univ Montpellier, Nîmes, France 2 Département de Microbiologie, CHU Nîmes, Nîmes, France

INTRODUCTION

- Staphylococcus aureus is the most frequent pathogen in cystic fibrosis (CF) and multidrug resistant strains especially methicillin-resistant **S. aureus** (MRSA) have been associated with more severe lung dysfunction¹.
- MRSA eradication is thus recommanded based on specific therapeutic strategies.
- Lung abnormalities in CF include a sticky mucus

protected from \rightarrow microorganisms are eradication treatments.

traits, including the **ability to form** Bacterial biofilm, important features are of also persistence^{2,3}.

AIM

7:

To evaluate the ability of **MRSA** isolated from CF patients to form biofilm, in absence and in presence of different antibiotics

METHODS

65 MRSA strains isolated from 35 CF patients at the CF center of the University Hospital of Montpellier, France

+ reference strain ATCC 29213.

- Genotyping by Multi Locus SequenceTyping (MLST) \rightarrow Sequence Type (ST)⁴.
- **BioFilm Ring test**[®] (BRT)⁵ for evaluating :

 \Rightarrow the ability to form biofilm in the Artificial Sputum Medium (ASM), mimicking the CF lung environment :

- measure of Biofilm index (BFI) after 4h
- BFI > 7: weak biofilm production (BP); 4 < BFI < moderate BP; BFI < 4: complete BP

 \Rightarrow the Antibiofilmogram^{®5} to evaluate the impact of ceftobiprole, ceftaroline, rifampicin, linezolid and trimethoprim on the biofilm formation :

- determination of the biofilm Minimal Inhibitory Concentrations): **bMICs**
- * comparison of bMIC with MIC

RESULTS

887	4	
48	1 = 3 2 = 1	
34		
n1 =3 n2= 2		

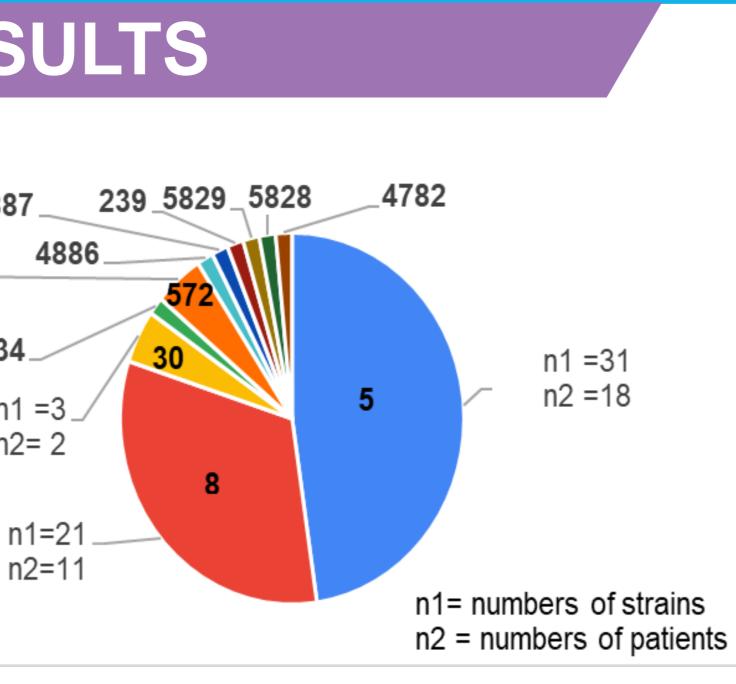

n2=11

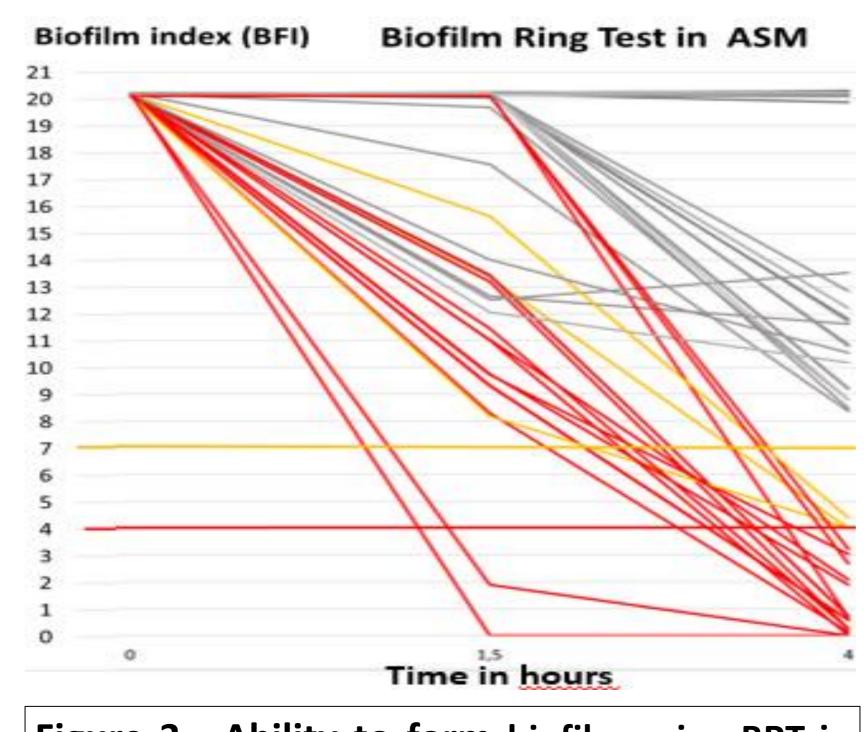

Figure 1: Sequence type (ST, bold type) distribution of Figure 2: Relative distribution of MRSA strains according to their ST 65 SARM isolated in 35 CF patients. n1= no of strains, and ability to form biofilm using BRT[®]. Grey = no biofilm production (BP), orange = partial BP, red = complete BP. n2= no of patients (indicated when >1 strain/ST)

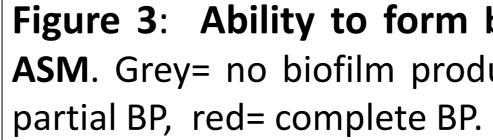
- within a sample.

<u>A.Boudet^{1,2}</u>, P.Sorlin³, C.Pouget¹, R.Chiron⁴, JP.Lavigne^{1,2}, C.Dunyach-Remy^{1,2}, H.Marchandin^{1,3}

3 Equipe PHySE, HydroSciences Montpellier, CNRS, IRD, Université de Montpellier, Montpellier, France 4 Centre de Ressources et de Compétences de la Mucoviscidose (CRCM), Centre Hospitalier Universitaire de Montpellier, Montpellier, France

• Strains belong to 11 STs (Figure 1).


3 patients had co-colonizations with strains of different STs within the same Clonal Complex (CC) \rightarrow 5 & 4782, 5 & 4887, 8 & 5829.


• ST5 and ST8 were the most frequent STs in our study (Figure 1) : 80% of the strains (52 strains/65) 83% of the patients (29 patients/35)

• Strains of ST5 & ST8 were more often producers of biofilm : 23.4% (15 strains/65) / 31.4% (11 patients/35) (Figure 2)

• 17/65 strains (26%) (13 patients (37%)) formed mature biofilm in 4h in ASM (Figure 3).

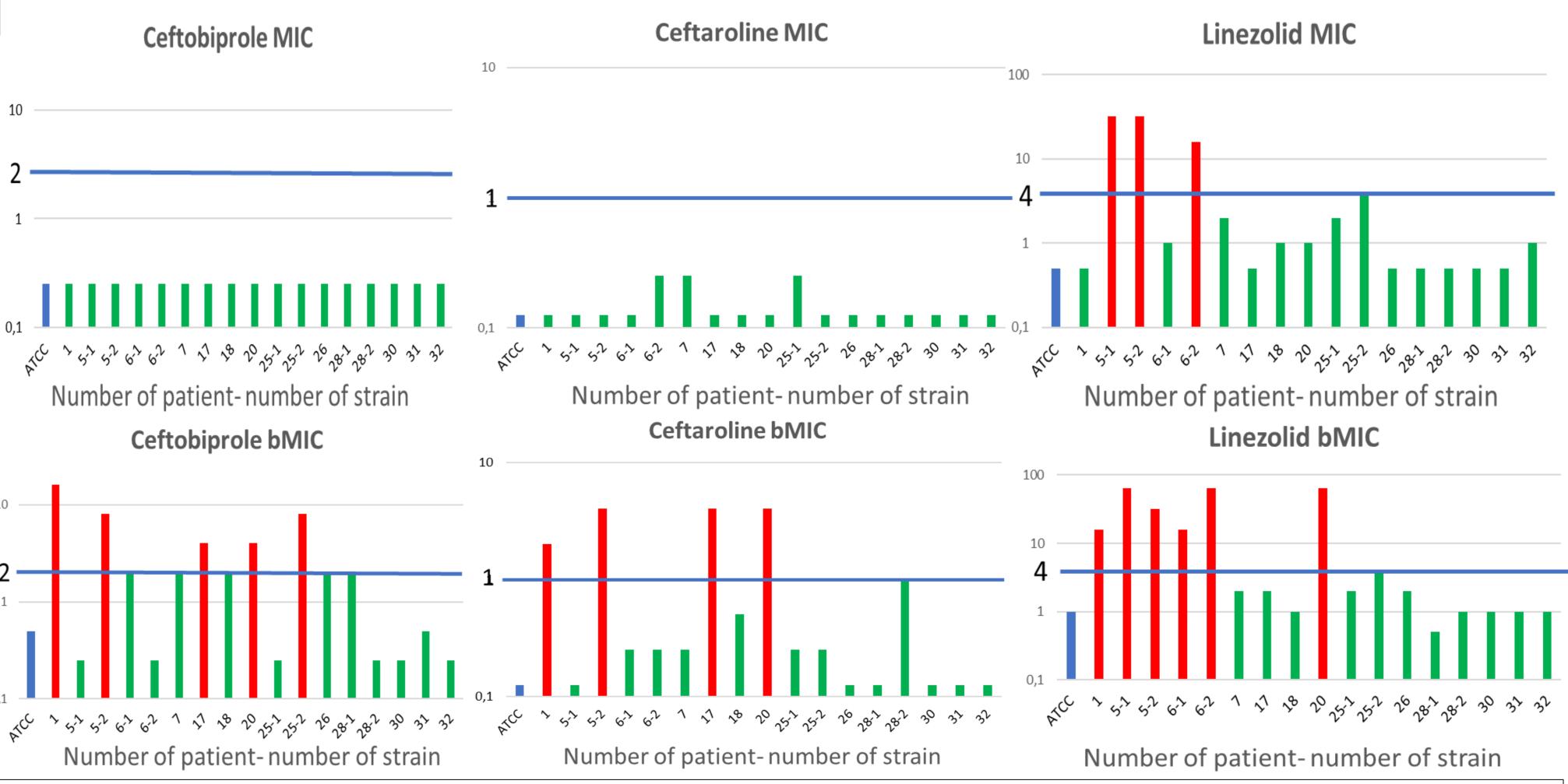
• 4 patients had strains displaying distinct ability to form biofilm

CONCLUSIONS

We first report data on early biofilm formation by CF MRSA isolates using an original and standardized approach not previously applied to such isolates ⁵.

Strains of ST5 and ST8 were predominant among the MRSA population studied and more rapidly produced mature biofilm than the other genotypes ⁶.

Antibiotic susceptibility decreased in biofilm highlighting the risk of treatment failure in CF patients.


Antibiofilmogram[®] represents a promising tool to guide the choice of the most effective drugs against biofilm formation.

In our study, prevention of biofilm formation was observed for ceftaroline > ceftobiprole > linezolid.

Figure 3: Ability to form biofilm using BRT in **ASM**. Grey= no biofilm production (BP), orange=

The 17 strains classified as complete biofilm producers were submitted to Antibiofilmogram[®]:

- Antibiotic susceptibility decreased in biofilm (bMIC > MIC).
- Prevention of biofilm formation (Figure 4) was observed for:
 - 76.5% of the strains (13/17) with ceftaroline
 - 70.6% of the strains (12/17) with ceftobiprole
 - 60.7% of the strains (11/17) with linezolid
- above the resistance threshold (not shown).

|Figure 4: Distribution of MICs (top) and bMICs (bottom) of ceftobiprole, ceftaroline and linezolid. Red= resistant strain, 📘 🏅 green= susceptible strain. Vertically= MIC or bMIC in mg/L. Horizontally= strain designation (patient number followed by strain number if multiple strains isolated from a sample were tested).

REFERENCES

- 178(8):814-21
- Staphylococcus aureus. J Clin Microbiol. 2000. 38(3):1008-15
- joint infections. Plos One. 2018. 13(8):e0200064.

CONTACT INFORMATION

• 5 strains were susceptible to rifampicin and an antibibiofilm effect was observed for 3 strains (not shown). No antibiofilm activity was noted for trimethoprim, as all the 17 strains (MIC: 8-32 mg/L) exhibited bMICs

Dasenbrook EC et al. Staphylococcus aureus and rate of FEV1 decline in cystic fibrosis. Am J Respir Crit Care Med. 2008.

Donlanand RM et al. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002. 15(2):167-93. Aktas NC et al. Panton-Valentine leukocidin and biofilm production of Staphylococcus aureus isolated from respiratory tract. The journal of infecton in developing countries. 2013. 7(11):888-91.

Enright MC et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of

Diaz Iglesias Y et al. Activity of antibiotics against *Staphylococcus aureus* in an *in vitro* model of biofilms in the context of cystic fibrosis: Influence of the culture medium. Antimicrob Agents Chemother. 2019. 63(7):e00602-19.

Tasse J et al. Association between biofilm formation phenotype and clonal lineage in *Staphylococcus aureus* strains from bone and

agathe.boudet@chu-nimes.fr