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The proteasome activator complex, PA28ab, regulates stemness in glioblastoma. 
Kyle M. Heemskerk, Ravinder Bahia, Xiaoguang Hao, Orsolya Cseh, H. Artee Luchman, and Samuel Weiss.

Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada

Glioblastoma (GBM) is the most common adult primary brain tumor plagued by inevitable recurrence 
and poor survival1. The proteasome is a multimeric protein complex that degrades cellular proteins 
contributing to homeostatic proteostasis, stress response, and antigen presentation2,3. Most 
proteasomal subunits are essential for GBM stem cell growth in vitro, however, they are also 
essential for non-malignant neural cells, suggesting that inhibition of those subunits may lead to 
toxicity4. Indeed, adverse neurological symptoms were prevalent in phase III clinical trials for the 
brain penetrant proteasome inhibitor, Marizomib5, which may be linked to the vital role of 
proteasome subunits in non-malignant neural counterparts. Proteasome inhibitors target the 
catalytic subunits of the proteasome2,3; however, the role of individual non-canonical proteasome 
activators have not been fully elucidated in GBM. Here, we examined the functionality of one 
proteasome activator complex in GBM brain tumour stem cells (BTSCs) in vitro and in vivo. 
Surprisingly, despite lack of growth changes in vitro, we observed abrogated stem-cell self-renewal in 
vitro and improved survival in vivo in orthotopic xenograft models following targeting of specific 
activator subunits. Molecular profiling of targeted cells revealed an upregulation of interferon-γ 
signaling and upregulation of antigen presentation machinery. Thus, targeting specific activator 
subunits may inhibit malignant growth in vivo while sparing normal neural counterparts from 
proteotoxic stress. We are further investigating enhanced antigen presentation by targeting these 
proteasome activator subunits in syngeneic immunocompetent models of GBM and examining 
changes in the tumor microenvironment. We also aim to determine if this mechanism is conserved 
when targeting other non-canonical proteasome activator complexes in GBM. Further understanding 
of this mechanism may provide novel targets for GBM treatment or improve immunotherapies.
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Figure 1. A) Model of different proteasome species that can be present within cells. The proteasome is a multi-subunit complex composed of a 
20S core particle that can bind to various regulator caps. Canonically, in the presence of immune signaling, the immunoproteasome subunits and 
the PA28αβ regulatory cap are induced. B) Expression of the 4 non-canonical proteasome activators in GBM tissue compared to normal brain 
tissue from the TCGA. (Unpaired t-test, * p < 0.05, ** p < 0.01, **** p < 0.0001. C) Relative essentiality for the 4 non-canonical proteasome 
activators in BTSCs grown in vitro compared to human fetal derived neural stem cells4.
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PA28αβ is upregulated in recurrent BTSCs

PA28αβ expression is induced 
by TMZ/radiation

PA28αβ KD/KO reduces sphere formation without altering growth in vitro 

PA28αβ knockdown (KD) or knockout (KO) 
increases susceptibility to ionizing radiation

PA28αβ KD/KO prolongs survival in 
xenograft models

PA28αβ KO leads to down regulation of and interacts 
with NCAM1

Figure 2. A) Proteasomal gene sets are enriched in recurrent BTSCs identified by GSEA7 for RNAseq from 
40 primary versus 17 recurrent BTSC cultures6. (p-value < 0.05). B) The proteasome subunit genes, 
PSME1/2 are significantly upregulated in recurrent BTSCs(Mann-Whitney, p <0.05). The proteins encoded 
by PSME1/2 (PA28αβ) are upregulated in a subset of recurrent BTSCs shown by western blot.

Figure 3. A) PSME1 RNA expression (RT-qPCR) in response to 
specified IR doses. (ANOVA p < 0.0005, n=3). B) PSME2 RNA 
expression (RT-qPCR) in response to specified IR doses. (ANOVA p < 
0.005, n=3). C) PSME1 RNA expression (RT-qPCR) in response to 
specified TMZ doses. (n=3). D) PSME2 RNA expression (RT-qPCR) in 
response to specified TMZ doses. (ANOVA p < 0.005, n=3). 

Figure 7. A) PSME1 shRNA KD in BT189 leads to reduced PA28αβ expression. B) PSME1 KD in BT189 does not significantly alter cell viability over time (growth) in vitro. (n=3) C) PSME1 KD in BT189 
reduced sphere forming frequency (t-test p <0.05) (n=3). D) PSME1/2 KO in BT67 does not significantly alter cell viability over time (growth) in vitro (n=3). E) PSME1/2 KO in BT67 reduced sphere 
forming frequency (t-test p <0.01) (n=3). 

Figure 5. A) PSME1 KD in BT189 leads to increased susceptibility to Ionizing radiation (IR) at specific 
doses. 7d. n=3. ANOVA p<0.05.   B) PSME2 KO in BT67 increased susceptibility to IR at specific doses. 7d. 
n=3. ANOVA * p<0.05, *** p<0.001, **** p<0.0001. 

Figure 9. A) PSME1 knockdown improves survival in BT189 
orthotopic xenograft model (log rank test p<0.0001, n=10). B) 
PSME1/2 KO improves survival in BT67 orthotopic xenograft 
model (log rank test p<0.0001, n=10). 
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The Proteasome and Glioblastoma Results

PA28αβ KD/KO alters standard proteasome and immunoproteasome 
activity

Model and Summary

Funding: 

Summary
1.The IFN-γ inducible proteasome activator 

complex, PA28αβ, appears to be upregulated 
in GBM and in BTSCs upon recurrence. 

2. PA28αβ can be upregulated by TMZ and 
radiation in BTSCs, however BTSCs fail to 
upregulate PA28αβ in response to canonical 
Ifn-γ signaling, suggesting a mechanism of 
immune evasion. 

3.PA28αβ KO leads to down regulation of 
extracellular matrix genes, specifically NCAM1. 

4.PA28αβ interacts with NCAM1 and may 
contribute to its stability.

5.PA28αβ (PSME1/2) KD and KO leads to 
increased radiation susceptibility, reduced 
sphere formation, and altered proteasome 
activity. 

6.PA28αβ KD/KO improved overall survival in 
orthotopic xenograft models
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Figure 8.  A) Model of the standard proteasome fluorescent probe assay11. B) Model of the immunoproteasome fluorescent probe assay11. C) 
PSME1 shRNA KD in BT189 increases the cleavage of the standard proteasome activity probe.  (logistic growth model, f-test p<0.0001). D) PSME1 
shRNA KD in BT189 increases the cleavage of the immunoproteasome activity probe.  (logistic growth model, f-test p<0.0001). E) PSME1/2 KO in 
BT67 increases the cleavage of the standard proteasome activity probe.  (logistic growth model, f-test p<0.0001). F) PSME1/2 KO in BT67 does 
not significantly alter the cleavage of the immunoproteasome activity probe. 

A

PA28αβ expression
is not induced IFN-γ

Figure 4. A) PA28αβ expression 
(Western) and p-STAT1 activation 
in response to Ifn-γ in BT67. B) 
PA28αβ expression (Western) and 
p-STAT1 activation in response to 
Ifn-γ in BT119. 
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Figure 6. A) PSME1 and PSME2 KO 
leads to a reduction of both PA28α and 
PA28β expression in BT67. B) VSD 
correlation between biological 
replicates of RNA sequencing in BT67 
PSME1-1 and PSME2-2 KOs compared 
to AAVS1 control9,10. C) Top enriched 
pathways in PSME1 and PSME2 KO 
cells. D) Top downregulated pathways 
in PSME1 and PSME2 KO cells. E) 
Genes downregulated in PSME1 and 
PSME2 KO cells that are part of the 
extracellular matrix organization 
pathway. F) Expression of NCAM1 in 
PSME1 and PSME2KO BT67 compared 
to AAVS1 control. Western blot. G) Co-
IP of FLAG-tagged PSME1/PSME2 and 
NCAM1 and PSMB5. 
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