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We have shown that WT1 is critical for leukaemic maintenance in AML
but is not required in healthy stem cells. In particular the WT1 +KTS
isoform is responsible for leukaemic growth and has distinct binding
sites to the WT1 —KTS isoforms. Both isoforms compete or cooperate
with other Zinc Finger transcription factors for their binding sites.

The gene encoding Wilms Tumour 1 (WT1) is recurrently upregulated in Acute Myeloid
Leukaemia (AML) and encodes a Zinc Finger Transcription Factor. Increased WT1
transcript levels are associated with primary refractory disease and with relapse. In an
shRNA depletion screen against transcription factors in vitro and in murine
xenotransplantation experiments, we have previously shown that WT1 was essential for
leukemic maintenance (Martinez-Soria et al., Cancer Cell, 2018).
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Several vaccine studies and more recently a T cell receptor study
targeted against WT1 have been undertaken but they have shown
mixed efficacy in AML (Chapuis et al, Nature Medicine, 2019). Since
we find that the different isoforms of WT1 have antagonistic effects,
we hypothesise that a more effective therapeutic strategy would be to
selectively target only WT1 +KTS isoforms.

WT1 produces at least 8 distinct isoforms in haematopoietic cells depending upon which
start site is employed and whether or not alternative splicing at the exon 5 and exon 9
sites occur. In particular, alternative splicing of a 3 amino acid sequence, Lysine-Serine-
Threonine ‘KTS’ in the Zinc Finger encoded by exon 9 alters the DNA binding of WT1.
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Whilst direct inhibition of the WT1 transcription factor is not currently
possible, we show that with pharmacological or genetic perturbation
of upstream parts of the Transcription Factor or signalling networks
(CBFB-RUNX1 inhibitor, dominant negative FOS or FLT3 inhibitor), WT1
can be knocked down (Figure 7).

Here, we investigate the role of individual WT1 isoforms in leukaemia and relate the
distinct DNA binding sites of the WT1 +KTS and WT1 —KTS isoforms to the phenotypic
behaviour of leukaemic cells. We also investigate how WT1 may co-operate with other
Transcription factors, with a particular focus on other Zinc Finger Transcription Factors.

RESULTS

WT1 is overexpressed in all subtypes of AML WT1 —KTS has distinct and more binding sites compared with WT1 +KTS The FLT3-ITD AML Transcription Factor Network
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