Health-Related Quality of Life in Adults With Hemophilia B After Receiving **Gene Therapy With Fidanacogene Elaparvovec**

Sylvia von Mackensen¹, Jonathan M Ducore², Lindsey A George^{3,4}, Adam Giermasz², Catherine E McGuinn⁵, John E J Rasko⁶, Benjamin J Samelson-Jones^{3,4}, Spencer K Sullivan^{3,4}, Jerome M Teitel⁷, Amit Chhabra⁸, Annie Fang⁸, Amanda O'Brien⁹, Frank Plonski⁹, Jeremy Rupon⁹, Lynne M Smith⁹, Ian Winburn¹⁰

¹Department of Medical Psychology, University of California Davis, Sacramento, CA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁴Perelman School of Pennsylvania, Philadelphia, Philadelphia, PA, USA; ⁴Perelman School of Pennsylvania, Philadelphia, Philadelphia, Philadelphia, Philadelphia, Philadelphia ⁵Weill Cornell Medical College, New York, NY, USA; ⁶Cell & Molecular Therapies, Royal Prince Alfred Hospital, SLHD, Sydney, Australia; ⁷St. Michael's Hospital, University of Toronto, ON, Canada; ⁸Pfizer Inc, New York, NY, USA; ⁹Pfizer Inc, Collegeville, PA, USA; ¹⁰Pfizer Ltd, Tadworth, Surrey, UK

BACKGROUND

- Hemophilia B is an X-linked (F9 gene) disorder of hemostasis that results in insufficient endogenous factor IX (FIX) activity.¹
- As disease severity worsens, people with hemophilia B experience more bleeding episodes, a greater loss of productivity and higher direct (e.g., clotting factor usage, hospitalization, outpatient services) and indirect (e.g., loss of earnings, absenteeism) costs.²
- The current standard of care for severe hemophilia B is prophylaxis with regular factor replacement therapy via intravenous (IV) infusions; this requires adequate venous access, a continual supply of therapy, and adherence to treatment regimen.¹
- The burden of the management and clinical sequelae of hemophilia B negatively impacts health-related quality of life (HRQoL) and self-reported health status.³
- Adeno-associated virus (AAV)—based gene therapy for hemophilia B has the potential to produce sustained endogenous FIX production, providing protection against spontaneous bleeding episodes and chronic arthropathy while avoiding problems of suboptimal adherence.⁴
- Fidanacogene elaparvovec (PF-06838435, formerly SPK-9001) is an AAV-based gene therapy vector transferring the high activity variant of the human FIX, FIX-R338L/FIX-Padua, aimed at enabling endogenous FIX expression in individuals with hemophilia B.⁵

OBJECTIVE

• To present descriptive data of the impact on HRQoL for participants with hemophilia B who received fidanacogene elaparvovec.

METHODS

Study Design

• Following completion of a phase 1/2a study (52-week duration), participants were eligible to enroll in a long-term follow-up (LTFU) study evaluating the long-term safety, durability, and efficacy of fidanacogene elaparvovec.

Participant Population

- Participants: males aged \geq 18 years with moderately severe to severe hemophilia B (FIX activity $\leq 2\%$).
- Key inclusion and exclusion criteria are shown in **Table 1**.

Table 1: Key inclusion and exclusion criteria for the phase 1/2a and LTFU studies			
Key Inclusion Criteria	Key Exclusion Criteria		
 ≥50 prior exposure days to any plasma-derived or recombinant FIX product 	 Active hepatitis B or C or currently on antiviral therapy for hepatitis B or C 		
 Prophylaxis participants: bleeding events and/or FIX infusions in last 12 wks 	 Significant liver disease or liver fibrosis 		
 On-demand participants: ≥4 bleeding events in last year and/or chronic arthropathy 	 HIV-1 or HIV-2 with CD4 counts ≤200/mm³ 		
No FIX inhibitors	 NAb titers ≥1:5 		
 Hemoglobin, platelets, ALT, AST, alkaline phosphatase, bilirubin, and creatine in acceptable range 	 History of chronic infection, chronic disease, or clinically significant major disease 		
	 Participation in previous gene therapy trial (in past 52 wks) or clinical study with investigational drug (in past 12 wks) 		

ALT=alanine transaminase; AST=aspartate aminotransferase; FIX=factor IX; LTFU=long-term follow-up; NAb=neutralizing antibody

Study Procedures

• 15 participants were enrolled in the phase 1/2a (NCT02484092), open-label, nonrandomized, multicenter study to evaluate the safety, tolerability, and kinetics of fidanacogene elaparvovec.

- (5e11 vg/kg).
- Participants were followed for ≥ 1 year (52 \pm 2 weeks). • Participants were then eligible to participate in a LTFU study for an
- additional 5-year follow-up (NCT03307980).
- Participants in both studies completed patient-reported outcome (PRO) assessments every 6 months through 3 years post infusion and then once annually during the LTFU study.
- The Haemophilia Quality of Life Questionnaire for Adults (Haem-A-QoL)^{6,7}:
- Consists of 46 items pertaining to 10 domains to assess HRQoL. Individual items are recoded, and domain scores and the Total Score are transformed, ranging from 0 to 100.
- High scores indicate high impairment in HRQoL.
- in "Physical Health" and "Sport and Leisure" domain scores are considered clinically meaningful.^{8,9}
- A 7-point reduction in the Total Score and a 10-point reduction The EQ-5D visual analog scale (EQ-VAS)¹⁰:
- Participants rate their current health state for endpoints of 100 (best imaginable health) to 0 (worst imaginable health). • A score change of 7 points is considered clinically meaningful

- lower amount or intensity of physical activities in the past month.
- Participants assess whether they have been doing more / the same / • The data cutoff date was August 2, 2022. The LTFU study is ongoing.

RESULTS

- All 15 participants completed the phase 1/2a study, and 14 enrolled in the LTFU study (1 participant declined).
- Participants who enrolled in the LTFU study were followed for a total of 3–6 years post gene therapy.
- Of the 14 participants, 13 had HRQoL data available through 3 years post infusion; beyond this time point there were too few participants (between 3 and 10) with both before and after gene therapy (baseline) values, so these data were not included
- Participant demographics at baseline are shown in **Table 2**.

who entered Characteristic, I Age, y

Gender Race

Severity

History of HIV infect

HIV maintained on anti-retroviral ther ^a Unless otherwise noted. LTFU=long-term follow-up; max=maximum; min=minimu

Haem-A-QoL Questionnaire

• Fidanacogene elaparvovec was delivered via a single IV infusion

- (i.e., the minimally important difference [MID]).¹
- The Change in Level of Activity questionnaire:

Table 2: Participant demographics pre-vector infusion for participants who entered the LTFU study			
Characteristic, n (%) ^a		N=14	
Age, y	Mean (SD)	42.0 (13.7)	
	Median	44.0	
	Min, max	20.0, 63.0	
Gender	Male	14 (100)	
Race	Black or African American	1 (7.1)	
	Native Hawaiian or other Pacific Islander	1 (7.1)	
	White	12 (85.7)	
Severity	<1%	9 (64.3)	
	1–2%	5 (35.7)	
Target joint(s) in past 52 wks	No	5 (35.7)	
	Yes	9 (64.3)	
History of HIV infection	No	12 (85.7)	
	Yes	2 (14.3)	
HIV maintained on anti-retroviral therapy	Yes	2 (14.3)	
^a Unless otherwise noted.	min_minimum		

• Overall, 12 participants had data at baseline through Year 3. For these participants, the mean (SD) Total Score at Year 3 decreased by 15.2 (10.3) from pre-vector infusion, indicating a clinically meaningful improvement in HRQoL (**Figure 1**).

visit in the phase 1 dosing study or Visit 1 of the LTFU study. Scoring was performed by averaging the non-missing item responses for each domain, and then rescaled to 0 to 100 nber of participants with responses for each individual domain at baseline and mean (SD) score at baseline; numbers of participants may be lower at subsequent timepoints. For the change from baseline, only participants with a value at both baseline visit and the specified post-baseline visit were included Haem-A-QoL=Haemophilia Quality of Life Questionnaire for Adults; HRQoL=health-related quality of life; LTFU=long-term follow-up

- Of the 12 participants with data at baseline through to Year 3, 8 had Total Score decreases \geq 7 (indicating a clinically meaningful improvement in HRQoL) at each visit through Year 3.
- Similarly, participant scores for each individual domain decreased (indicating an improvement in HRQoL) over time from pre-vector infusion in all instances except for the "Dealing with Hemophilia" domain (**Figure 1**).
- The mean (SD) "Physical Health" domain score at Year 3 decreased by 11.9 (15.6) from pre-vector infusion.
- The mean (SD) "Sport and Leisure" domain score at Year 3 decreased by 29.4 (25.0) from pre-vector infusion.

EQ-VAS Assessment

- Mean scores were above mean baseline score and after Year 1. mean changes from baseline were consistently 7 to 8 points (indicating an improvement in overall health status) (Figure 2).
- At Year 3, the EQ-VAS score increased from baseline by mean (SD)
- of 7.2 (6.2) in 12 participants with data at both visits (Figure 2).

Presented at the American Society of Hematology (ASH) Annual Meeting, December 9–12, 2023, San Diego, CA, USA

EQ-VAS=EQ visual analog scale

Change in Level of Activity Questionnaire

- Responses showed that a greater proportion of participants at each visit up to Year 3 (n=12-14) reported doing the same or more intensive physical activities in the past month (Figure 3).
- None of the 13 participants reported a reduction in the amount or intensity of physical activities at Year 3 (**Figure 3**).

Week 52 assessment was from the End of Study visit in the phase 1 dosing study or Visit 1 of the LTFU study.

3628

CONCLUSIONS

- HRQoL improvements after gene therapy are an indicator that fidanacogene elaparvovec can reduce the burden associated with hemophilia.
- PRO assessments will be a part of BENEGENE-2, an ongoing pivotal phase 3 study to investigate the efficacy of fidanacogene elaparvovec.
- BENEGENE-2 will provide additional insights via the analyses of secondary endpoints of the HRQoL benefits for participants with hemophilia B following gene therapy with fidanacogene elaparvovec.

REFERENCES

- 1. Srivastava A, et al. Haemophilia 2020;26:1-158.
- 2. Chen CX, et al. Value Health 2017;20:1074-82.
- 3. Rodriguez-Santana I, et al. Orphanet J Rare Dis 2022;17:148.
- 4. Leebeek FWG. Miesbach W. Blood 2021:138:923-31.
- 5. George LA, et al. N Engl J Med 2017;377:2215-27.
- 6. von Mackensen S, Gringeri A. Quality of life in hemophilia. In: Preedy VR, Watson RR (eds): Handbook of Disease Burdens and Quality of Life Measures. New York: Springer, 2010; pp1895-920. 7. von Mackensen S, et al. Haemophilia 2017;23:383-91.
- **8.** von Mackensen S, et al. Haemophilia 2020;26:1019-30.
- 9. Wyrwich KW, et al. Haemophilia 2015;21:578-84.
- **10.** Herdman M, et al. Qual Life Res 2011;20:1727-36.
- **11.** Pickard AS, et al. Health Qual Life Outcomes 2007;5:70.

ACKNOWLEDGMENTS

This study was funded by Pfizer. Medical writing support was provided by Marion James, PhD, of Engage Scientific Solutions and funded by Pfizer. Copyright © 2023

Sec

