

Diagnosis and Outcome of Patients with Idiopathic Hypereosinophilic Syndrome and Cardiac Involvement

Johannes Lübke¹, Anna Hohneck^{2,3}, Jan Leipe⁴, Nicole Naumann¹, Alice Fabarius¹, Wolf-Karsten Hofmann¹, Georgia Metzgeroth¹, Theano Papavassilu^{2,3}, Andreas Reiter¹, Juliana Schwaab¹

INTRODUCTION

- The diagnosis of idiopathic hypereosinophilic syndrome (iHES) is based on three major criteria: i) peripheral blood (PB) eosinophilia ≥ 1.5 x 10⁹/L for > 1 month, ii) signs of **eosinophilic organ or tissue infiltration**, and iii) **exclusion** of secondary causes.¹
- The clinical presentation of iHES is widely heterogeneous and varies in the pattern and extent of organ damage. In cases with multi-organ involvement (e.g. lung, cardiac, gastrointestinal, cutaneous manifestations), the main differential diagnosis is eosinophilic granulomatosis with polyangiitis (EGPA, formerly known as Churg-Strauss syndrome), an antineutrophil cytoplasmic autoantibodies (ANCA)-associated systemic vasculitis.²
- iHES or ANCA-negative EGPA may lead to cardiac involvement (CI) in up to 60% of affected patients and has a potential impact on morbidity and mortality.³⁻⁵ The different disease stages include an acute phase with eosinophilic myocarditis and myocardial necrosis which is followed by a subacute phase with formation of thrombi and a final phase of fibrotic replacement and restrictive cardiomyopathy.⁶⁻¹⁰ CI often occurs early in the course of iHES and EGPA and is reported to be more common in ANCAnegative than ANCA-positive EGPA patients.¹¹ The onset of restrictive cardiomyopathy is associated with early death.¹²

STUDY OBJECTIVES AND DESIGN

- Because of the heterogeneous presentations, specific guidelines for assessment of cardiac involvement in iHES are lacking. Basic information is provided by clinical investigation, electrocardiography and cardiac biomarkers, e.g., N-terminal prohormone B-type natriuretic peptide (NT-proBNP), and troponin I
- Conventional transthoracic echocardiography (TTE) and endomyocardial biopsy have long been recognized as the diagnostic standard procedures. However, the sensitivity of TTE in early detection of myocardial infiltration/fibrosis is highly variable (range: 23-83%),¹¹ while endomyocardial biopsy is invasive and frequently non-informative (due to limitations in samples size and accessible biopsy sites).⁹
- Cardiac magnetic resonance imaging (MRI) has emerged as useful imaging modality. It reliably provides data on structural changes, particularly with the late gadolinium enhancement (LGE) as a marker for infiltration/fibrosis, thrombi or pericardial effusion. MRI can also detect functional changes, including dysfunction of heart valves or impairment of left ventricular ejection fraction (LV-EF).
- Given the limited information available on CI in patients with iHES, we sought to evaluate the diagnosis and outcome of CI through a combination of cardiac MRI and cardiac biomarkers in a large series of iHES patients within the German Registry on Eosinophils and Mast Cells (GREM).

Figure 1: Patient flowchart

German Registry of Eosinophils and Mast Cells (n=507)

¹Department of Hematology and Oncology, University Hospital Mannheim, Germany; ²Department of Cardiology, Angiology, Haemostaseology and Intensive Care, University Hospital Mannheim, Heidelberg University, Mannheim, Germany; ³European Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany, ⁴Department of Nephrology, Immunology and Rheumatology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany

Figure 2: Assessment of cardiac involvement

Autopsy (above): Endocardium with subendothelial fibrosis

Cardiac MRI (left): Late gadolinium enhancement

- Diagnosis of CI by cardiac MRI was based on detection of a non-ischaemic intramyocardial LGE, LV-EF <50%, presence of intracavitary thrombi, moderate to severe valvular heart disease, conduction disorder, or pericardial effusion >10mm in the absence of other causes (e.g., coronary artery disease, cardiomyopathy, hypertensive heart disease, perimyocarditis).
- PB counts including absolute and relative numbers of eosinophils were evaluated in all patients. Glomerular filtration rate-corrected NT-proBNP (normal range: 0-125 ng/l) and troponin I (normal range: 0-0.045 µg/l) were measured at diagnosis and during follow-up as clinically indicated.

RESULTS

Figure 3: Multi-organ involvement

• Organ involvement. At diagnosis, patients revealed involvement of lungs (26/62, 42%), asthma (23/62, 37%), paranasal sinuses (31/62, 50%), abdominal organs (bowel, liver, spleen, 25/62, 40%), skin (15/62, 24%), lymph nodes (10/62, 16%), brain (5/62, 8%) and other locations (joints/muscles, 8/62, 13%). Overlapping involvement of two or more organs was observed in 52/62 (84%) patients.

presence of intracavitary thrombi, or manifestation of LV heart failure

Table 1: Disease and treatment characteristics

	Abnormal cardiac MRI (n=34)	Abnormal biomarkers (n=30)	Abnormal MRI and biomarkers (n=23)	No abnormal N or biomarkers (n=21)
Cardiac MRI				
Presence of LGE, n (%)	31 (91)	23 (77)	23 (100)	0 (0)
Intracavitary thrombi, n (%)	6 (18)	4 (13)	4 (17)	0 (0)
Pericardial effusion, n (%)	11 (32)	7 (23)	7 (30)	0 (0)
Involvement of heart valves/ conduction system, n (%)	9 (26)	7 (23)	7 (30)	0 (0)
LV-EF (%), median (IQR)	59 (50-64)	59 (52-65)	58 (49-63)	64 (59-69)
Impaired LV-EF (< 50%), n (%)	9 (26)	7 (23)	7 (30)	0 (0)
LV-GLS (%), median (IQR)	-11 (-14-[-]10)	-11 (-13-[-]9)	-11 (-13-[-]10)	-15 (-16-[-]12)
Cardiac biomarkers, median (IQR)				
NT-proBNP (ng/l)	631 (129-1846)	602 (223-1788)	827 (350-2069)	51 (40-92)
Troponin I (µg/I)	0.02 (0.02-0.14)	0.02 (0.02-0.14)	0.08 (0.02-0.15)	0.02 (0.02-0.02)
Organ involvement, n (%)				
Lung	16 (47)	16 (53)	13 (57)	7 (33)
Asthma	16 (47)	15 (50)	13 (57)	5 (24)
Paranasal sinuses	23 (68)	22 (73)	17 (74)	3 (14.0)
Skin	5 (15)	6 (20)	4 (17)	9 (43.0)
Gastrointestinal tract or intraabdominal organs (spleen, liver, kidney)	14 (41)	11 (37)	8 (35)	8 (38.0)
Lymph nodes	4 (12)	3 (10)	2 (9)	5 (24.0)
Brain	5 (14)	4 (13)	4 (17)	0 (0)
Others	2 (6)	2 (7)	2 (9)	6 (29.0)
Immunosuppresive therapy, n (%)				
Glucocorticoids	34 (100)	30 (100)	23 (100)	19 (91)
Mepolizumab	13 (38)	10 (33)	9 (39)	0 (0)
Azathioprine	11 (32)	10 (33)	8 (35)	0 (0)
Cyclophosphamide	9 (27)	9 (30)	9 (39)	1 (5)
Methotrexate	9 (27)	9 (30)	7 (30)	0 (0)
Others	2 (6)	2 (7)	1 (4)	2 (10)
Follow-up				
Cardiac events during follow-up, n (%)	15 (44)	14 (47)	14 (61)	0 (0)
Follow-up cardiac MRI, n (%)	20 (59)	15 (50)	15 (65)	0 (0)
Regression of LGE intensity or extent	7	7	7	0
Thrombus regression	1	1	1	0
Improvement of LV-EF	1	0	0	0
Follow-up biomarkers				
NT-proBNP (ng/I), median (IQR)	139 (68-352)	206 (99-476)	313 (103-518)	79 (57-114)
Troponin I (ug/l), median (IQR)	0.02 (0.02-0.02)	0.02 (0.02-0.02)	0.02 (0.02-0.02)	0.01 (0.01-0.01)

Basic characteristics. Median age at diagnosis and at cardiac MRI were 49 (IQR 37-58; range 15-88) and 51 (IQR 40-63; range 25-88) years, respectively. There was a slight male predominance (36/62 [58%]). Eosinophilia ≥1.5x10⁹/L in PB was present in all patients (median 4.5x10⁹/L, IQR 2.8-9.5; range 1.5-94.4). Autoantibodies not specific for EGPA including antinuclear antibodies, rheumatoid factor, anti-cyclic citrullinated peptide antibodies were identified in 21/63 (33%) patients. Concomitant cardiovascular diseases were present in 15/62 (24%) patients, e.g. arterial hypertension in 12/62 (19%) and diabetes in 3/62 (5%) patients

• Ca
man
• Ca
carc
enha
• Ca
com
was
• Ca
asse
• Lin
-
i

Cardiac biomarkers NT-p

Availab Trop

• A.-B. Cox proportional hazards regression analyses to predict the risk for a cardiac event in iHES patients by means of cardiac magnetic resonance imaging (MRI) and biomarkers (troponin I and NT-proBNP). A. Patients were attributable to more than more group. B. Patients were attributable to only one group (distinct patient groups).

 Almost all patients with cardiac involvement received glucocorticoid-based treatment (60/62, 97%). • Three-quarters of patients (36/48, 75%) were also treated with the anti-IL-5 agent **mepolizumab** (13/48, **27%**) or immunosuppressive agents, such as azathioprine (15/48, 31%), cyclophosphamide (10/48, 21%), methotrexate (12/48, 25%), mycophenolate mofetil or interferon-alpha (7/48, 15%).

References **1.** Roufosse et al., J Allergy Clin Immunol 2010. **2.** Chang et al., J Allergy Clin Immunol Pract 2021. 3. Ommen et al., Am J Cardiol 2000. 4. Ogbogu et al., Immunol Allergy Clin North Am 2007. 5. Cereda et al., Eur J Intern Med 2017. 6. Mankad et al., Heart 2016. 7. Shah et al., Echocardiography 2006. 8. Bishop et al., Circulation 2001. 9. Salanitri et al., AJR Am J Roentgenol 2005. 10. Corradi et al., Hum Pathol 2004. 11. Mavrogeni et al., Inflamm Allergy Drug Targets 2014. 12. Kleinfeldt et al., Clin Res Cardiol 2010.

CONCLUSIONS

ardiac involvement is a common and potentially under-diagnosed ifestation of iHES.

ardiac MRI is a sensitive and reliable technique for detection of liac involvement in iHES; the presence of late gadolinium ancement is a particularly useful disease marker.

ardiac biomarkers should be included in the assessment, as the bination of elevated biomarkers and a pathological cardiac MRI associated with an increased risk of cardiac events.

ardiac MRI and biomarkers can serve as parameters for response ssment.

nitations of our study:

 lack of clear definitions for diagnosis of cardiac involvement in iHES (missing validated definition or gold standard).

- risk of over- or under-interpretation of the extent of cardiac involvement based on the definition used in this study.

Table 2: Troponin I and NT-proBNP

All patients with iHES and cardiac MRI (n=62)

C DIOIIIdI KEIS	
ole cardiac biomarker data	50/62 (81)
ed cardiac biomarkers	30/50 (60)
ble NT-proBNP	38/62 (61)
oroBNP (ng/l)	265 (103-1165)
NT-proBNP > 125 ng/l	27/38 (43)
	631 (212-1730)
ole troponin I (μg/I), n (%)	49/62 (78)
onin I (µg/I)	0.015 (<0.015-0.026)
Troponin I > 0.045 μg/l, n (%)	10/49 (20)
	0.02 (0.02-0.13)
iomarkers available, n (%)	37 (60)
a cardiac biomarkers elevated	10/37 (27)

Abbreviations: iHES, idiopathic hypereosinophilic syndrome; MRI, cardiac magnetic resonance imaging; n, numbers; NTroBNP, N-terminal prohormone B-type natriuretic peptide

Figure 5: Cumulative risk of a cardiac event

Treatment

Dec 8-15 / San Diego

VULLANDOLOCLE

