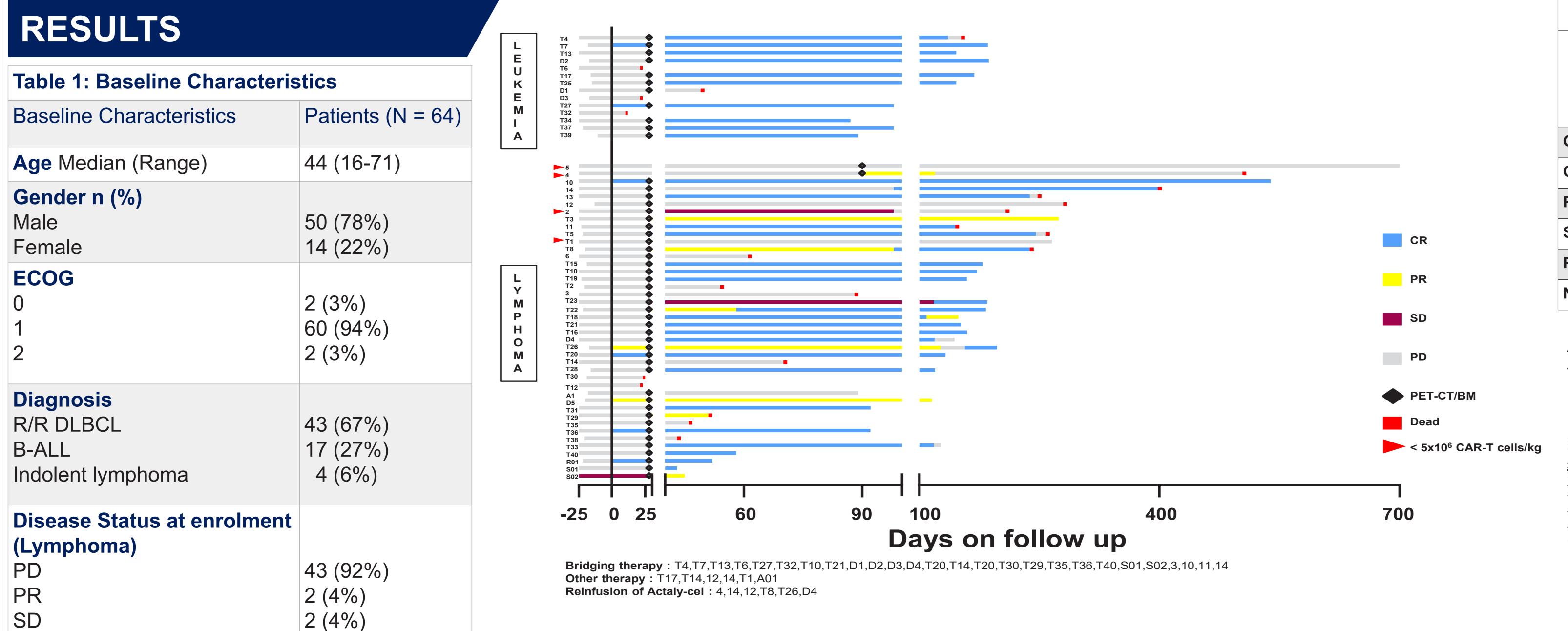


High efficacy and excellent safety profile of Actalycabtagene autoleucel, a humanized CD19 CAR-T product in r/r B-cell malignancies: A phase II pivotal trial

Hasmukh Jain^{1*}, Atharva Karulkar², Devanshi Kalra², Smrithi Ravikumar², Netra Ghandade², Ruchira Patil², Shreshtha Shah², Afrin Firfiray², Juber Pendhari³, Rushikesh Patil², Manivasagam S², Neha Sharma¹, Alok Shetty¹, Lingaraj Nayak¹, Bhausaheb Bagal¹, Shripad Banavali¹, Gaurav Narula¹, Narendra Agrawal⁶, Lovin Wilson⁷, Preeti Desai¹, Anisha Navkudkar¹, Prashant Tembhare¹, Navin Khattry¹, Epari Sridhar¹, Nikhil Patkar¹, Sumeet Gujral¹, Tanuja Shet¹, Uma Sakhadeo¹, Papagudi Ganesan Subramanian¹, Jayshree Thorat², Anamika Prashant¹, Sachin Punatar¹, Anant Gokarn¹, Kinjalka Ghosh¹, Archi Agrawal¹, Yash Jain¹, Venkatesh Rangarajan¹, Shashank Ojha¹, Shilpushp Bhosle¹, Sumeet Mirgh¹, Sumathi Hiregoudar¹, Minal Poojary¹, Nitin Shetty¹, Vasundhara Patil¹, Akshay Baheti¹, Sanjay Biswas¹, Gaurav Salunkhe¹, Kunal Gala¹, Manju Sengar¹, Nirali N. Shah⁸, Sattva S. Neelapu⁹, Rahul Purwar^{2*}

1.Tata Memorial Centre, Mumbai, 2. Immunoadoptive Cell Therapy Private Limited (ImmunoACT), 3. Indian Institute of Technology, Bombay, 4. Deenanath Mangeshkar Hospital & Research Centre, 5. American Oncology Institute, Hyderabad, 6. Rajiv Gandhi Cancer Institute & Research Institute, New Delhi, 7. SMBT Hospital, Nasik, 8. National Cancer Institute, 9. The University of Texas MD Anderson Cancer Center(MDACC)

INTRODUCTION AND AIM


- Commercially approved CD19 CAR-T cell therapies are effective in r/r B cell malignancies but are with significant albeit manageable toxicities.
- These toxicities contribute to significant morbidity.
- We have developed a novel, humanized CD19 CARcell therapy, Actalycabtagene autoleucel (Actalycel) and previously reported the safety in Phase study (Jain H et.al., 4641 ASH 2022)
- Here, we present the pooled results from Phase I and Phase II study evaluating Actaly-cel.
- Recently received market authorization by regulatory authorities of India (Brand name: NexCAR19).

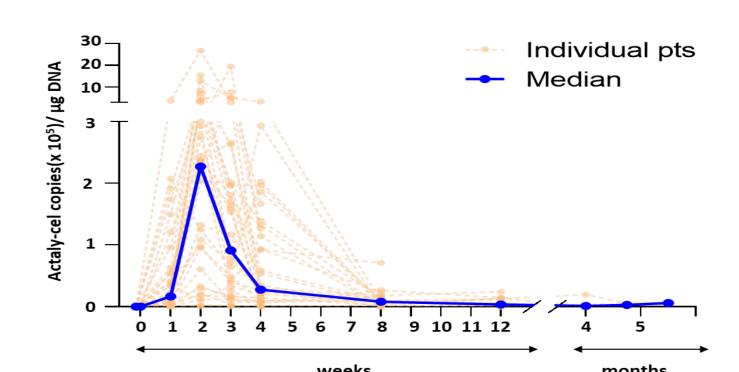
MATERIALS AND METHODS

- Manufacturing Site: Immunoadoptive Cell Therapy Pvt. Ltd (ImmunoACT)
- Clinical Trial Sites: Tata Memorial Hospital, DMHRC, AOI, RGCI, SMBT hospital.

·				
	Phase I	Phase II		
Study Setting	Single -Centre	Multi centric		
Population	High Grade Lymphoma	r/r B Cell Malignancies		
Primary Objective	Safety and tolerability	Objective response rate		
Dose	1 x 10 ⁹ to 2 x 10 ⁹	$\geq 5 \times 10^6 / \text{kg}$		
CTRI Registration	CTRI/2021/04/032727	CTRI/2022/12/048211		

- Patients above the age of 15 with ECOG status 0-1, adequate organ function and no CNS involvement were screened for the study.
- B-cell Patients refractory relapsed/ malignancies were included in the study.
- A lymphodepleting chemotherapy regimen of 30mg/m2/day Fludarabine and cyclophosphamide 500 mg/m2/day administered.
- After 2 days rest period the patients were infused on day 0 with Actaly-cel.
- The response assessment was scheduled at day

Enrolled (64) **Table 2: Toxicities & responses** Leukemia- 17, Lymphoma- 47 **Disease Status at enrolment** Manufacturing feasibilit **Toxicities** N = 57(Leukaemia) Died before Apheresis-2 (12%) Relapsed Leukapheresed Patients (62) Adverse Events of Special Interest Leukemia- 17, Lymphoma- 45 15 (88%) Refractory Withdrawn by PI- 3 40 (70%) 10 (21%) **Bulky Disease** Cytokine Release Syndrome Infused Patients (57) Died before infusion-1 Leukemia- 14, Lymphoma- 43 (Grade I/II) (>/= 7cm) n(%)61% (5-98) 3 (5%) Blast%, median (range) Cytokine Release Syndrome Dose < 5 million/kg- 4 CR-3, CR-26 Alive: 2 PD-4 (Grade III) Efficacy evaluable cohort (53)* · Dead: 2 Line of therapies 2 (1-6) Median (range) 0 (0%) **ICANS** * 1- Yet to reach Follow-up Status: Extranodal sites n (%) Alive on follow up: 33 21 (37%) Hypogammaglobulinemia 12 (25%) Dead: 20 (2-Infection, 18-PD) 12 (25%)


CONCLUSIONS

>/=2

- Actaly-cel (NexCAR19) is highly effective with a very favorable safety profile in relapsed/refractory B-cell malignancies.
- The absence of ICANS, shorter duration of cytopenias and a lower incidence of grade 3/4 CRS makes it one of the safest CD19 CAR-T cell therapy products.
- Actaly-cel (NexCAR19) can improve the ease of delivery of CAR T-cell therapy in a wide-range of settings.

Responses				
	Efficacy Evaluable Cohort (n=53)	Lymphoma (n= 38)	Leukemia (n=15)*	
ORR	36 (67%)	26 (68%)	10 (72%)	
CR	29 (52%)	19 (37%)	10 (72%)	
PR	7 (15%)	7 (18%)	0 (0%)	
SD	1 (2%)	1 (3%)	0 (0%)	
PD	11 (23%)	9 (24%)	2 (14%)	
NE	4 (8%)	2 (5%)	2 (14%)	
		1	1	

Actaly-cel showed robust in vivo expansion and persistence

REFERENCES

- and low cytokine production by novel humanized anti-CD19 CAR T cells Molecular Cancer Therapeutics. 2021 May;20(5):846-58
- Firfiray A. Asiia S. Suvasia P. Suvasia P. Phase I Trial of Humanized CD19 CART-Cell Therapy Developed in India: Safe, Active and Feasible for Outpatient Therapy. Blood. 2022 Nov 15;140(Supplement 1):10332-4
- . Karulkar A, Jain H, Shah S, Khan A, Jaiswal A, Firfiray A, Suvasia P, Suvasia P, Pendhari J, Asija S, Chowdury A. Making Anti-CD19 CAR-T Cell Therapy Accessible and Affordable: First-in-Human Phase I Clinical Trial Experience from India. Blood. 2022 Nov 15;140(Supplement 1):4610-1

ACKNOWLEDGEMENTS

- Immunoadoptive Cell Therapy Private Limited (ImmunoACT)
- Funding received from Indian Council of Medical
- NCG CRO team for monitoring the study Dr. Nitin Jain, MDACC

CONTACT

Dr. Hasmukh Jain

Email: dr.hkjain@gmail.com

• Dr. Rahul Purwar

Email

rahul.purwar@immunoact.com

ASH2023