Glucocorticoid deficiency due to disruption of mitochondrial steroidogenesis leads to dysregulation of antioxidant pathways and nucleotide biosynthesis

Meltem Weger1,4, Benjamin Görling2, Gernot Poschet3, Aliesha Griffin1,5, Rüdiger Hell3, Burkhard Luy2, Ferenc Müller1, and Nils Krone1,6

1University of Birmingham, Birmingham, United Kingdom; 2Karlsruhe Institute of Technology, Karlsruhe, Germany; 3University of Heidelberg, Heidelberg, Germany; 4EPFL, Lausanne, Switzerland; 5UCSF School of Medicine, San Francisco, USA; 6University of Sheffield, Sheffield, United Kingdom

Aim

The role of glucocorticoids (GCs) as regulators of systemic homeostasis has been mainly studied by using synthetic GCs or in states of GC excess. Thus, the pathophysiological consequences of cortisol deficiency on metabolic and biosynthesis pathways remain largely elusive.

Here we make use of a recently published ferredoxin (fdx1b) null-allele zebrafish line with massively decreased cortisol concentrations and a severely impaired stress response in order to define the global pathophysiologic response in vivo to glucocorticoid deficiency.

Summary

- Systemic profiling of the fdx1b null-allele zebrafish line was performed by a combination of RNA-sequencing and metabolomics analysis.
- An enrichment of genes in the fdx1b null-allele zebrafish line linked with pathways altered in metabolic disease was observed.
- This includes significant alteration in expression of genes and metabolites acting in pathways of energy and biomolecule synthesis (e.g., amino acids), and antioxidant pathways.

Conclusion

We provide in vivo evidence on the global pathophysiological effects of GC deficiency, which can be vital for improving the understanding of the pathophysiology of adrenal insufficiency in humans.

Results

fdx1b null-allele zebrafish larvae are impaired in cortisol synthesis, cortisol regulated gene expression and in their stress response

Griffin et al., Endocrinology, 2016

Enrichment of genes linked to metabolism and metabolic disease

Pathway analysis reveals genes linked to metabolic disease

Disease and Disorders

Increased oxidative stress

Genes involved in energy and biomolecule synthesis are altered in cortisol deficient fdx1b mutants, but can be rescued with dexamethasone (DEX).

Oxidative stress responsive genes can be observed in the cortisol deficient fdx1b mutant

Untargeted NMR analysis shows differences in the metabolomes between fdx1b mutants and wild-type siblings. Some of the altered metabolites can be rescued in the fdx1b mutants with DEX.

Altered oxidative stress levels in cortisol deficient fdx1b mutants

Oxidative stress responsive genes

Oxidative stress can be linked to pathogenesis. The GSH:GSSG ratio is a marker for oxidative stress.

Increased oxidative stress in fdx1b mutants, which can be rescued with DEX.

Material and Methods

Establishing a fdx1 null-allele zebrafish line using Transcription Activator-like Effector Nucleases (TALENs)

From the duplicated zebrafish fdx1 genes (fdx1a, fdx1b), fdx1b is facilitating cortisol synthesis.

Fdx1b binding TALEN sites target the conserved motif 1 including cysteine residues for Fe/S binding.

Generation of an allele (fdx1b^{−/−}) with a 12 bp in-frame deletion removing a conserved cysteine in motif 1.