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 METHODS 

Breast Implant-associated anaplastic large cell lymphoma (BI-ALCL) is a rare T-cell lymphoma 

arising in association with breast implant, particularly those with textured surfaces. We 

recently identified two histopathological BI-ALCL subtypes: in-situ and tumor-type which 

correlated with the seroma vs tumor mass clinical presentation, respectively. Although 

genetic events involving the JAK/STAT pathway have been reported and the putative role of 

local chronic inflammation has been suspected, BI-ALCL pathogenesis remains elusive. To 

further explore potential molecular mechanisms involved in the pathobiology of these two 

distinct BI-ALCL subtypes, we performed a genomic characterization of 34 such cases.    

Fifty-four BI-ALCL patients have been diagnosed through the Lymphopath network and 

registered in the Lymphoma Study Association Registry from 2010 to 2018. Whole 

exome sequencing (WES) was performed on 22 samples of BI-ALCL and their matched 

germline DNA. Sequencing was performed on an Illumina HiSeq4000 with an expected 

mean depth of 200X and 70X for tumor and germline samples, respectively. Twenty-four 

BI-ALCL cases including 12 cases already analyzed by WES, were screened by target deep 

sequencing (TDS) with 500X average depth using the 406 genes FundationOne Heme 

panel. 

 Nineteen patients presented with in situ BI-ALCL whereas 15 were diagnosed with tumor-type BI-ALCL. 

 Most patients had a favorable outcome except 3 patients  who died of lymphoma progression.  

 By immunohistochemistry, all cases were CD30 positive, showed an incomplete T-cell phenotype and a common activated cytotoxic 
profile. Neoplastic cells were often positive for EMA (90%) and ALK1 was consistently negative.  

 Altogether, the entire cohort of 34 BI-ALCL cases sequenced by WES and/or TDS showed:   

 Recurrent mutations of epigenetic modifiers in 74% of cases, involving notably KMT2C (26%), CHD2 (15%), CREBBP (15%) and KMT2D 
(9%).  

 Twenty cases (59%) showed mutations in at least one member of the JAK/STAT pathway including STAT3 (38%), JAK1 (18%), STAT5B 
(3%), and negative regulators like SOCS3 (6%), SOCS1 (3%) and PTPN1 (3%).  

 Mutations in genes involved in lymphocytes development such as EOMES (12%), PI3K-AKT/mTOR (6%) and loss of function mutations in 
TP53 (12%) were also identified.  

 JAK/STAT alterations were more frequent in tumor-type than in-situ samples (p=0.038).  

 All BI-ALCL cases expressed pSTAT3 by immunohistochemistry, regardless of STAT3 mutation status.  

 KMT2C and KMT2D mutations were correlated with a loss of H3K4 trimethylation by immunohistochemistry. 

 Copy number aberration (CNA) analysis identified recurrent alterations including gains on chromosomes 2, 9p, 12p and 21 and losses on 
4q, 8p, 15, 16 and 20. Regions of CNA encompassed genes involved in the JAK/STAT pathway and epigenetic regulators as well.  

JAK-STAT pathway and epigenetic regulators - critical players in BI-ALCL pathogenesis  

RESULTS 

 Dysregulation of cytokine receptor signaling caused by recurrent mutations in the JAK/STAT pathway is a key event in BI-ALCL pathogenesis.  
 The finding of STAT3 being less frequent mutated in in situ than in tumor-type cases suggests an injury continuum ranging from activation of JAK/STAT pathways through cytokine receptor-

ligand interactions at the implant site, to the occurrence of JAK/STAT gain-of-function mutations.  
 The frequent mutations in chromatin remodeling genes highlight the importance of epigenome and provide new insights into the complexity of BI-ALCL oncogenesis. 

CONCLUSIONS 

Figure 1 : WES and/or TDS of 34 BI-ALCL. 

Figure 2 :  Functional pathways altered 
by mutations in BI-ALCL . 
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Figure 5:  Hypothetical mechanisms involved in BI-ALCL pathogenesis.  

Figure 4: pSTAT3 and H3K4me3 
immunostaining in BI-ALCL. 

 INTRODUCTION 

Figure 3: Mapping of protein variants 
produced by  most frequent mutated 
genes. 
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