JAK-STAT pathway and epigenetic regulators - critical players in BI-ALCL pathogenesis

Camille Laurent^{1*} and Alina Nicolae^{2,3*}, Cecile Laurent⁴, Fabien Le Bras⁵, Virginie Fataccioli^{3,6}, Nadia Amara¹, José Adélaïde⁷, Arnaud Guille⁷, Jean-Marc Schiano⁸, Bruno Tesson³, Alexandra Traverse-Glehen⁹, Marie-Pierre Chenard², Lénaïg Mescam¹⁰, Anne Moreau¹¹, Catherine Chassagne-Clement¹², Joan Somja¹³, Fréderic Escudié¹, Marc André¹⁴, Nadine Martin³, Anne-Sophie Hamy-Petit¹⁶, Fabien Reyal¹⁷, Manon Croix³, Daniel Birnbaum⁷, Pierre Brousset^{1**} and Luc Xerri^{18**} and Philippe Gaulard^{6**}

¹Pathology and Cytology Department, CHU Toulouse, IUCT Oncopole, Inserm, UMR1037 Centre de Recherche en Cancerologie de Toulouse, France. ²Pathology and Cytology Department, CHU Hautepierre, Strasbourg, France.³ Institut Mondor de Recherche Biomédicale, INSERM U955 and Université Paris-Est, Créteil, France. ⁴CALYM - LYSARC, Insitut Carnot, Pierre-Bénite, France. ⁵Lymphoid Malignancies Unit, AP-HP, Groupe Hospitalier Henri Mondor-Albert Chenevier, Créteil, France. ⁶Department of Pathology, AP-HP, Groupe Hospitalier Henri Mondor-Albert Chenevier, Créteil, France. ⁶Department of Pathology, AP-HP, Groupe Hospitalier Henri Mondor-Albert Chenevier, Créteil, France. ⁶Department of Pathology, AP-HP, Groupe Hospitalier Henri Mondor-Albert Chenevier, Créteil, France. Hospitalier Henri Mondor-Albert Chenevier, Université Paris-Est, Créteil, France. ⁷Department of Predictive Oncology, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Aix-Marseille University, UM 105, Marseille, France. ⁸Department of Predictive Oncology, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Aix-Marseille University, UM 105, Marseille, France. ⁸Department of Predictive Oncology, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Aix-Marseille University, UM 105, Marseille, France. Hematology, Institut Paoli-Calmettes, Marseille, France.¹⁹ Department of Bio-Pathology, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France.¹¹ Pathology and Cytology Department, Centre Hospitalier Hôtel Dieu, Nantes, France.¹² Department of Bio-Pathology and Cytology Department, Centre Hospitalier Hôtel Dieu, Nantes, France.¹² Department of Bio-Pathology and Cytology Department, Centre Hospitalier Hôtel Dieu, Nantes, France.¹² Department of Bio-Pathology and Cytology Department, Centre Hospitalier Hôtel Dieu, Nantes, France.¹² Department of Bio-Pathology and Cytology Department, Centre Hospitalier Hôtel Dieu, Nantes, France.¹² Department of Bio-Pathology and Cytology Department, Centre Hospitalier Hôtel Dieu, Nantes, France.¹⁴ Department of Bio-Pathology and Cytology Department, Centre Hospitalier Hôtel Dieu, Nantes, France.¹⁴ Department of Bio-Pathology and Cytology Department, Centre Hospitalier Hôtel Dieu, Nantes, France.¹⁴ Department of Bio-Pathology and Cytology Department, Centre Hospitalier Hôtel Dieu, Nantes, France.¹⁴ Department of Bio-Pathology and Cytology Department, Centre Hospitalier Hôtel Dieu, Nantes, France.¹⁴ Department of Bio-Pathology and Cytology Department, Centre Hospitalier Hôtel Dieu, Nantes, France.¹⁴ Department of Bio-Pathology and Cytology Department, Centre Hospitalier Hôtel Dieu, Nantes, France.¹⁴ Dieu, Nantes, France.¹⁴ Dieu, Nantes, Pathology and Cytology Department, Centre Léon Bérard, Lyon, France.¹³Pathology, CHU UCL Namur, Yvoir, Belgium. ¹⁵Residual Tumour & Response to Treatment Laboratory, RT2Lab, INSERM, U932, PSL Research University, Translational Research Department, Institut Curie, Paris, France. ¹⁶Department of Surgery, Institut Paoli-Calmettes, Aix-Marseille University, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France. *Co-first author. **Co-Last author.

INTRODUCTION	METHODS
Breast Implant-associated anaplastic large cell lymphoma (BI-ALCL) is a rare T-cell lymphoma arising in association with breast implant, particularly those with textured surfaces. We recently identified two histopathological BI-ALCL subtypes: <i>in-situ</i> and tumor-type which correlated with the seroma vs tumor mass clinical presentation, respectively. Although genetic events involving the <i>JAK/STAT</i> pathway have been reported and the putative role of local chronic inflammation has been suspected, BI-ALCL pathogenesis remains elusive. To further explore potential molecular mechanisms involved in the pathobiology of these two distinct DLALCL explores are perferenced a sequence and the putative role.	Fifty-four BI-ALCL patients have been diagnosed through the <i>Lymphopath</i> network and registered in the Lymphoma Study Association Registry from 2010 to 2018. Whole exome sequencing (WES) was performed on 22 samples of BI-ALCL and their matched germline DNA. Sequencing was performed on an Illumina HiSeq4000 with an expected mean depth of 200X and 70X for tumor and germline samples, respectively. Twenty-four BI-ALCL cases including 12 cases already analyzed by WES, were screened by target deep sequencing (TDS) with 500X average depth using the 406 genes FundationOne Heme
arising in association with breast implant, particularly those with textured surfaces. We recently identified two histopathological BI-ALCL subtypes: <i>in-situ</i> and tumor-type which correlated with the seroma vs tumor mass clinical presentation, respectively. Although genetic events involving the <i>JAK/STAT</i> pathway have been reported and the putative role of local chronic inflammation has been suspected, BI-ALCL pathogenesis remains elusive. To further explore potential molecular mechanisms involved in the pathobiology of these two distinct BI-ALCL subtypes, we performed a genomic characterization of 34 such cases.	registered in the Lymphoma Study Association Registry from 2010 to 2018. We exome sequencing (WES) was performed on 22 samples of BI-ALCL and their mat germline DNA. Sequencing was performed on an Illumina HiSeq4000 with an experiment depth of 200X and 70X for tumor and germline samples, respectively. Twenty BI-ALCL cases including 12 cases already analyzed by WES, were screened by target sequencing (TDS) with 500X average depth using the 406 genes FundationOne H panel.

RESULTS

- Nineteen patients presented with in situ BI-ALCL whereas 15 were diagnosed with tumor-type BI-ALCL.
- Most patients had a favorable outcome except 3 patients who died of lymphoma progression.
- By immunohistochemistry, all cases were CD30 positive, showed an incomplete T-cell phenotype and a common activated cytotoxic profile. Neoplastic cells were often positive for EMA (90%) and ALK1 was consistently negative.
- Altogether, the entire cohort of 34 BI-ALCL cases sequenced by WES and/or TDS showed:
- Recurrent mutations of epigenetic modifiers in 74% of cases, involving notably KMT2C (26%), CHD2 (15%), CREBBP (15%) and KMT2D (9%).
- ✓ Twenty cases (59%) showed mutations in at least one member of the JAK/STAT pathway including STAT3 (38%), JAK1 (18%), STAT5B (3%), and negative regulators like SOCS3 (6%), SOCS1 (3%) and PTPN1 (3%).
- Mutations in genes involved in lymphocytes development such as EOMES (12%), PI3K-AKT/mTOR (6%) and loss of function mutations in TP53 (12%) were also identified.
- ✓ JAK/STAT alterations were more frequent in tumor-type than *in-situ* samples (p=0.038).
- All BI-ALCL cases expressed pSTAT3 by immunohistochemistry, regardless of STAT3 mutation status.
- KMT2C and KMT2D mutations were correlated with a loss of H3K4 trimethylation by immunohistochemistry.
- Copy number aberration (CNA) analysis identified recurrent alterations including gains on chromosomes 2, 9p, 12p and 21 and losses on 4q, 8p, 15, 16 and 20. Regions of CNA encompassed genes involved in the JAK/STAT pathway and epigenetic regulators as well.

Figure 1 : WES and/or TDS of 34 BI-ALCL. Alterations Nonsense Missense FrameshiftIndel InframeIndel Pathways JAK/STAT Signalling Epigenetic Modifiers Cell Cycle / Apoptosis PI3K/AKT/mTOR Others STAT3 JAK1 SOCS3 STAT5B PTPN1 SOCS1 KMT2C CHD2 CREBBP KMT2D CHD8 DNMT3A HDAC2 KDM1A NCOR1 SUZ12 ARID2 ASXL3 HDAC4 HDAC5 HDAC8 TET2 **TP53** TSC22D1 **MKI67** ATR CDKN2A PTPN11 PIK3CG

Figure 4: pSTAT3 and H3K4me3 immunostaining in BI-ALCL.

Figure 5: Hypothetical mechanisms involved in BI-ALCL pathogenesis.

CONCLUSIONS

- Dysregulation of cytokine receptor signaling caused by recurrent mutations in the JAK/STAT pathway is a key event in BI-ALCL pathogenesis.
- The finding of STAT3 being less frequent mutated in in situ than in tumor-type cases suggests an injury continuum ranging from activation of JAK/STAT pathways through cytokine receptorligand interactions at the implant site, to the occurrence of JAK/STAT gain-of-function mutations.
- The frequent mutations in chromatin remodeling genes highlight the importance of epigenome and provide new insights into the complexity of BI-ALCL oncogenesis.

