Paricalcitol exerts potent immunomodulatory effects on Tregs and Th17 cells in patients with severe kidney disease

Pascal Meier

Division of Nephrology, Hôpital du Valais - Sion/Switzerland

pascal.meier@hopitalvs.ch

Background

Patients with chronic kidney disease (CKD) frequently have low serum 1,25-dihydroxyvitamin [1,25(OH)₂D] or calcitriol. With CKD progression, the tendency to vitamin D substrate insufficiency leads to progressive calcitriol deficiency. Importantly, calcitriol has significant immunomodulatory effects in addition to its role in calcium homoeostasis. A variety of immune cells, including activated T cells express the intracellular vitamin D receptor and are responsive to calcitriol. While the exact mechanisms still require clarification, there is now compelling evidence that the hormonally active calcitriol can activate regulatory T cells (Tregs) and reduce the activity of the proinflammatory Th17 cells. Paricalcitol (19-nor-1,25-dihydroxyvitamin D2) is a synthetic analogue of vitamin D approved for treatment of secondary hyperparathyroidism. Recent observations demonstrated important differences between paricalcitol and calcitriol. However, so far there have been a limited number of studies addressing the immunomodulatory effects of paricalcitol in severe CKD patient (ESKD).

Results

Mean HD vintage was 41.1 16.2 months. Twenty-five percent of the patients had diabetes. We observed a significant increase in Tregs and a decrease in Th17 cells numbers in both treated patients with a significantly higher increase in Tregs of 43% and decrease in Th17 cells of 32% in paricalcitol-treated patients compared with those treated with calcitriol. This was in association with decreased IL-17, IL-21, IL-6 and TNF-α levels. CD4+/CD25- T cells from the paricalcitol group showed reduced proliferative activity in co-culture with Tregs compared with calcitrioltreated patients (p = 0.002), suggesting an improved suppressive activity of Tregs with paricalcitol. Six months after HBV vaccination, all paricalcitol-treated patients significantly improved their anti-HBs Ab titers (> 100 UI/L) compared with those on calcitriol treatment.

Baseline characteristics according to vitamin D therapy

	Paricalcitol (n = 10)	Calcitriol (n = 10)	P value
Age, <i>years</i> *	63±13	64±12	ns
Male, <i>n</i> (%)	5 (50)	5 (50)	ns
Duration of HD, years*	4±2	4±2	ns
Causes of ESKD			
Hypertension	3	3	
Diabetes	2	3	
ADPKD	2	1	
Glomerulonephritis	1	2	
Others	2	1	
Laboratory values*			ns
sCreat (umol/L)	824	817	
sUrea (mmol/L)	22.4	20.8	
hsCRP (mg/L)	3.26	3.51	
sAlb (g/L)	40.5	39.0	
Leuc (G/L)	7.0	6.0	
PMN (%)	70.4	63.1	
Lv (%)	20.3	23.8	

	Paricalcitol (n = 10)	Calcitriol (n = 10)	P value
Calcium (mmol/L)*	2.18±0.11	2.21±0.13	ns
Phosphorus (mmol/L)*	1.36±0.16	1.38±0.15	ns
Parathyroid hormone (pg/ml)*	453±173	449±188	ns
Alkaline phosphatase (U/liter)*	122±52	124±45	ns
Hemoglobin (g/L)*	110±5	112±6	ns
Kt/V*	1.43±0.21	1.45±0.26	ns
HBs Ag (neg.)	neg.	neg.	
Anti-HBs (< 10 UI/L)*	3.21±3.98	3.28±4.08	ns
Anti-HBc (neg.)	neg.	neg.	

*mean SD; ESKD: end-stage kidney disease; ADPKD: autosomal dominant polycystic kidney disease

Objectives

In this study we aimed to evaluate the effects of oral paricalcitol and calcitriol supplementation in various inflammation T cells and markers (Tregs, Th17, IL-17, IL-21, IL-6, TNF-α). Corollarly, T cell immune response to hepatitis B (HBV) vaccination (blood antibody titers) was also clinically determined in patients with chronic end-stage kidney disease (stage 5D CKD).

Stained cells were assessed by flow cytometer.

The frequency of Tregs (CD4+/CD25+/Foxp3+)

and Th17(CD4+/IL17+) cells is expressed as a

percentage of CD4+ T cells by sequential gating

on lymphocytes and CD4⁺ T cells. The levels of

serum cytokines and other markers were

examined by ELISA. Ten patients were included

in each treatment arm (Paricalcitol [Pari] (2

μg/tid) and Calcitriol [Calci] (0.25 μg/tid)). All

patients underwent hemodialysis (HD) with high-

flux membranes and ultrapure water. The

dialysate calcium concentration was 1.5 mmol/L.

All patients included were HBV vaccination non-

responders (Titers < 10 UI/L). After 6 months of

active vitamin D treatment, a full course of four

40 μg anti-HBV i.m. vaccination (1, 2, 3, 6 mo)

were scheduled. Immunological evaluation was

Patients and Methods

Circulating Tregs numbers (T0+12 m)

Controls: healthy HB vaccinated subjects with normal kidney

IL-17-positive CD4 T cells in PBMCs (T0+12 m)

Anti-HBs titer by group at the end of the study (T0+12 m)

Controls: healthy HB vaccinated subjects with normal kidney

TNFa supernatant concentrations after HB vaccination

Groups

Summary and Conclusions

realized 6 months later (T0+12 months).

Pascal Meier

A better neutralization of Th17 *in vivo* with paricalcitol reveals that paricalcitol inhibits micro-inflammatory process mainly in a Tregs-dependent manner but also partly because of a decrease in Th17 number and function. These findings suggest that systemic immune modulation by paricalcitol may be a potentially valuable therapeutic approach against micro inflammation and to improve immune response in stage 5D CKD patients.

