

Plasma levels of microRNA in chronic kidney disease: patterns in acute exercise and exercise training

A.H. Van Craenenbroeck^{1,2}, K.J. Ledeganck⁴, K. Van Ackeren¹, A. Jürgens⁴, V.Y. Hoymans¹, E. Fransen⁵, V. Adams⁶, B. De Winter⁴, G.A. Verpooten⁴, C. J. Vrints^{1,3}, M. M. Couttenye², E. M. Van Craenenbroeck^{1,3}

(1) Laboratory of Cellular and Molecular Cardiology, University of Antwerp; (2) Department of Nephrology & (3) Department of Cardiology, Antwerp University Hospital; (4) Laboratory of Experimental Medicine and Pediatrics, University of Antwerp; (5) StatUA Center for Statistics, University of Antwerp; (6) Department of Internal Medicine/Cardiology, University of Leipzig

INTRODUCTION AND OBJECTIVES

- Exercise training is an effective way to improve exercise capacity in predialysis CKD
- MicroRNA (miRNA or miR) have been suggested as regulators of cardiovascular adaptation to exercise

AIMS

- 1. To examine the effects of an acute exercise bout on plasma levels of a selected miR panel in patients with CKD compared to age-matched healthy volunteers
- To evaluate whether plasma levels of a selected miR panel at rest and after acute exercise are influenced by an aerobic exercise training program of 3 months in CKD

METHODS

RESULTS

Patients' characteristics

ACUTE EXERCISE

	CKD	HS	p-value
Age (years)	49.6 ± 15.3	43.4 ± 4.7	0.179
Sex (F/M)	18/14	5/7	0.388
BMI (kg/m²)	26.7 ± 5.3	23.7 ± 2.2	0.012
eGFR (ml/min/1.73 m²)	46.2 ± 23.8	101.4 ± 9.7	<0.001
Systolic blood pressure (mmHg)	125 ± 15	125 ± 13	0.935
Diastolic blood pressure (mmHg)	81 ± 12	79 ± 9	0.520
VO ₂ peak (ml/kg/min)	26.1 ± 8.0	38.5 ± 9.8	0.002

Acute exercise

Plasma levels baseline

Effect of a maximal exercise bout

Effect of a maximal exercise bout

EXERCISE TRAINING

	UC (n=21)	ET (n=19)	p-value
Age (years)	54.7 ± 14.1	51.5 ± 11.8	0.441
Sex (F/M)	10/11	8/11	0.726
BMI (kg/m²)	28.3 ± 5.8	28.3 ± 6.2	0.965
eGFR (ml/min/1.73 m²)	42.2 ± 14.9	40.2 ± 15.2	0.665
Systolic blood pressure (mmHg)	123 ± 16	129 ± 17	0.259
Diastolic blood pressure (mmHg)	79 ± 11	81 ± 13	0.740
VO ₂ peak (ml/kg/min)	24.4 ± 6.6	26.4 ± 5.4	0.287

Exercise training

Plasma levels baseline

Following exercise training, the level of plasma miR-210 was significantly downregulated in comparison with UC

CONCLUSION

- > The differential expression in plasma microRNA following acute exercise and exercise training in CKD points towards a possible physiological role in cardiovascular adaptation to exercise
- > Future studies evaluating miR behaviour over a longer time period might shed more light on the beneficial effects of exercise training and point towards novel therapeutic targets in CKD

