FUNCTIONAL DEFICIENCY OF VITAMIN K IN HEMODIALYSIS PATIENTS

Katarzyna Wyskida¹, Agnieszka Żak-Gołąb^{2,3}, Jarosław Wajda⁴, Dariusz Klein^{5,6}, Joanna Witkowicz⁷, Rafał Ficek⁸, Sylwia Rotkegel⁹, Urszula Spiechowicz¹⁰, Joanna Kocemba-Dyczek^{11,12}, Jarosław Ciepał¹³, Magdalena Olszanecka-Glinianowicz¹, Andrzej Więcek⁸, Jerzy Chudek²

¹Medical University of Silesia, Department of Pathophysiology, Health Promotion and Obesity Management Unit, Katowice, POLAND, ²Medical University of Silesia, Department of Pathophysiology, Pathophysiology Unit, Katowice, POLAND, ³Medical University of Silesia, Department of Internal, Autoimmune and Metabolic Diseases, Katowice, POLAND, ⁴Specialist Hospital No. 3 in Rybnik, Dialysis Center in Rybnik, Rybnik, POLAND, ⁵Centrum Dializa Sosnowiec, Dialysis Center in Pszczyna, Pszczyna, Pszczyna, Poland, Pol

OBJECTIVES

Functional deficiency of vitamin K (both vitamin K_1 and K_2), involved in the process of γ -carboxylation is postulated as one of the most relevant links between the chronic kidney disease and vascular calcification among hemodialysis patients.

Ally

The aim of this study was to determine the level of functional vitamin K deficiency and its relation to vitamin K_1 intake in HD patients.

Table 1. Demographic and clinical characteristics of 153 hemodialysis patients (mean & 95% CI). *for patients with diabetes

Age (years)	62 (59 - 64)
Gender (male/female)	93/60
Body mass index (kg/m²)	25.5 (24.2-26.7)
Obesity (BMI≥30 kg/m²) (n/%)	27 / 17.6
Primary cause of CKD (n/%)	
Diabetes	43 / 28.1
Hypertension	17 / 11.1
Nephrolithiasis	8 / 5.2
Autosomal Dominant Polycystic Kidney Disease (ADPKD)	10/ 6.5
Ischemic nephropathy	3 / 2.0
Glomerulonephritis	24 / 15.7
Interstitial nephritis	13 / 8.5
Other or unknown	35 / 22.9
Time on dialysis (months)	48 (40-56)
Kt/V (per HD session)	1.21 (1.13-1.27)
Co-morbidity (%)	
Hypertension	138 / 90.2
Diabetes	55 / 35.9
Coronary artery disease	84 / 54.9
Stroke	12 / 7.8
Past kidney transplantation	11 / 7.2
Pharmacotherapy (n/%)	
Antihypertensive	138 / 90.2
No of antihypertensive drugs (n)	2.0 (1.8-2.2)
Oral anti-diabetic	18 / 32.7*
Insulin	37 / 67.3*
Antiplatelet	79 / 51.6
Statins	60 / 39.2
Fibrates	0
Oral phosphorous binders	127 / 83.0
Carbonate calcium dose (g/day)	3.8 (3.4-4.3)
Sevelamer hydrochloride	4 / 2.6
Cinacalcet	18 / 11.8
Cinaclcet dose (mg/day)	79 (60-98)
Alfacalcidol	18 / 11.8

Table 2. Biochemical characteristics of study groups (mean & 95% CI).

	7 7 7
Hemoglobin (g/dL)	10.7 (10.4 – 11.0)
Total cholesterol (mmol/L)	4.63 (4.37 – 4.88)
LDL cholesterol (mmol/L)	2.61(2.39 - 2.83)
HDL cholesterol (mmol/L)	1.14(1.06-1.23)
Triglycerides (mmol/L)	1.94(1.67 - 2.22)
Calcium (mmol/L)	2.17(2.14 - 2.20)
Phosphorous (mmol/L)	1.88(1.74-2.03)
Parathyroid hormone (pg/mL)	442 (318 – 618)
$25(OH)D_3 (ng/mL)$	22.9 (17.7 – 28.1)
ucMGP (mg/mL)	17.9 (16.3 – 19.5)
ucMGP > 9.2 mg/mL (%)	77.1
PIVKA II (ng/mL)	0.59 (0.51 - 0.68)
PIVKA II > 0.66 ng/mL (%)	27.5

Figure 1: The receiver operator curve analysis showing the threshold daily intake for vitamin K₁ resulting in increased plasma concentration of PIVKA II (>0.66 ng/mL).

MIETTH (O)DS

Protein induced vitamin K absence or antagonist-II (PIVKA-II) and uncarboxylated matrix Gla protein (ucMGP) were assessed by ELISA in 153 stable, prevalent HD patients and 20 apparently healthy adults (for PIVKA-II and ucMGP normal ranges establishment). Daily phylloquinone intake were assessed in addition to other macro- and micronutrients on the basis of food frequency questionnaire (FFQ).

RESULTS

Functional vitamin K deficiency defined as elevated PIVKA II levels was present in 27.5% of HD patients, and in 45% of cases was explained by insufficient phylloquinone intake for Polish population (> 55 µg for women and > 65 µg for men). Applying ROC analysis we showed that vitamin K₁ intake below 40.2 µg/day is associated with functional vitamin K deficiency. between was no correlation There concentration of PIVKA II and ucMGP, that suggest that functional vitamin K deficiency does not influence ucMGP levels among HD patients. Plasma ucMGP concentrations were significantly greater in among HD patients than in healthy subjects (17.9 [16.3 -19.5] vs. 7.1 [5.1 - 9.2] mg/mL; p<0.001).

Table 3. Macro- and micronutrients, and K_1 intake in 109 participants, who returned filled questionnaire (mean & 95% CI or *median with 25 and 75 percentiles).

	DHQ (N=109)	DHQ PIVKA II ≤0.66 ng/ml	PIVKA II ≤0.66 ng/ml	PIVKA II >0.66 ng/ml	Statistical
		N=109) (N=75)	(N=34)	significance	
Daily energy intake (kcal/day)	1639 (1461-1817)	1573 (1378-1768)	1675 (1289-2063)	Ns	
Daily energy intake (kcal/kg/day)	23.2 (20.4-26.1)	22.1 (18.9-25.4)	23.1 (17.2-29.0)	Ns	
Carbohydrates (g/day)	207 (184-229)	198 (175-221)	213 (163-263)	Ns	
Proteins (g/day)	66 (58-73)	63 (51-82)	67 (51-82)	Ns	
Proteins (g/kg/day)	0.92 (0.80-1.04)	0.87 (0.75-0.99)	0.94 (0.64-1.20)	Ns	
Fat (g/day)	63 (55-71)	60 (51-70)	63 (47-80)	Ns	
Fiber (g/1000 kcal)	9.3 (8.8-9.9)	9.3 (8.6-10.1)	9.4 (8.6-10.3)	Ns	
Sodium (g/day)	2.92 (2.62-3.22)	2.78 (2.46-3.10)	3.06 (2.41-3.72)	Ns	
Potassium (mmol/day)	62.9 (56.3-69.5)	60.8 (53.1-68.4)	63.6 (50.3-76.9)	Ns	
Calcium (mg/day)	591 (519-663)	573 (493-653)	598 (439-742)	Ns	
Magnesium (mg/day)	224 (202-248)	216 (192-240)	235 (183-286)	Ns	
Phosphorus (mg/day)	963 (856-1070)	919 (800-1038)	988 (762-1213)	Ns	
Phosphorus (mg/kg/day)	13.5 (11.7-15.4)	12.8 (10.8-14.9)	13.3 (9.5-17.1)	Ns	
Vitamin K ₁ (μg/day)*	103 (43-221)	106 (56-224)	71 (37-203)	Ns	
Vitamin K ₁ intake <55 in men and <65 μg/day in women (%)	34	27	45	0.08	

OBJECTIVES

- Functional vitamin K deficiency in almost half of the population of haemodialysis patients is caused by low vitamin K₁ intake.
- 2. Uncarboxylated matrix Gla protein level seems not to be a surrogate of functional vitamin K₁ deficiency in haemodialysis patients.

