Extracellular Signal-regulated Kinase 5 Associates with Casein Kinase II to Regulate GPIb-IX-mediated Platelet Activation via PTEN/PI3K/Akt Pathway

Zhipeng Cheng, Xuemei Fan, Xue Chen, Heng Mei, Junling Liu, Yu Hu
Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

OBJECTIVES

To reveal the function and mechanisms of Extracellular Signal-regulated Kinase 5 (ERK5) in glycoprotein (GP) Ib-IX-mediated platelet adhesion, aggregation, and activation.

METHODS

The functions of ERK5 in GPIb-IX-mediated human platelet activation were assessed using botrocetin/VWF or platelet adhesion to VWF under shear stress in the presence of a specific inhibitor of ERK5. ERK5-associated proteins were pulled down from Chinese hamster ovary (CHO) cells transfected with HA-tagged-ERK5, identified by mass spectrometry, and confirmed in human platelets. Roles of ERK5-associated proteins in GPIb-IX-mediated platelet activation were clarified using specific inhibitors.

RESULTS

1. ERK5 inhibitor XMD8-92 suppressed the second wave of human platelet aggregation induced by Botrocetin/VWF (Fig. 1A, B), and inhibited human platelet adhesion on immobilized VWF under shear stress (Fig. 1C, D).
2. Casein kinase II (CKII) was identified as an ERK5-associated protein in human platelets (Fig. 2A). CKII inhibitor TBB, similar to XMD8-92, specifically restrained PTEN phosphorylation in human platelets treated with Botrocetin/VWF (Fig. 2B).
3. The aggregation experiments confirmed that both PI3K inhibitor wortmannin and Akt inhibitor SH6 dose-dependently inhibited Botrocetin/VWF-induced human platelet aggregation (Fig. 3A). The results presented in Fig. 3(B) showed the phosphorylation levels of Akt were significantly suppressed in human platelets stimulated by Botrocetin/VWF in the presence of ERK5 inhibitor XMD8-92, CKII inhibitor TBB and PI3K inhibitor wortmannin respectively.
4. These results suggested that ERK5/CKII regulate GPIb-IX-mediated platelet activation via the PTEN/PI3K/Akt signaling pathway (Fig. 4A). Furthermore, results showed that the average size of the platelets that spread on immobilized Fg was 247.5 ± 17.23 pixels for XMD8-92 pre-incubated platelets vs 446.5 ± 57.69 pixels for DMSO pre-incubated platelets, demonstrated that ERK5 may play critical roles in integrin αIIbβ3-mediated human platelet spreading (Fig. 4B).

CONCLUSIONS

The interacting protein of ERK5 in human platelet is identified as casein kinase II (CKII). We identified a new Src-Raf-MEK5-ERK5/CKII-PTEN pathway, which play critical role in GPIb-IX-mediated platelet activation via regulation of PI3K/Akt activation. And blockage of ERK5 association with CKII may serve as a promising anti-platelet targets.

References